

Welcome to the documentation of eDisGo!

[image: _images/edisgo_logo.png]

The python package eDisGo serves as a toolbox to evaluate flexibility measures
as an economic alternative to conventional grid expansion in
medium and low voltage grids.

The toolbox currently includes:

	Data import from external data sources

	ding0 [https://github.com/openego/ding0] tool for synthetic medium and low
voltage grid topologies for the whole of Germany

	OpenEnergy DataBase (oedb) [https://openenergy-platform.org/dataedit/] for
feed-in time series of fluctuating renewables and scenarios for future
power plant park of Germany

	demandlib [https://github.com/oemof/demandlib] for electrical load time series

	Static, non-linear power flow analysis using PyPSA [https://pypsa.org] for
grid issue identification

	Automatic grid reinforcement methodology solving overloading and voltage issues
to determine grid expansion needs and costs based on measures most commonly
taken by German distribution grid operators

	Multiperiod optimal power flow based on julia package PowerModels.jl optimizing
storage positioning and/or operation
as well as generator dispatch with regard to minimizing grid expansion costs

	Temporal complexity reduction

	Heuristic for grid-supportive generator curtailment

	Heuristic grid-supportive battery storage integration

Currently, a method to optimize the flexibility that can be provided by electric
vehicles through controlled charging is being implemented.
Prospectively, demand side management and reactive power management will
be included.

See Getting started for the first steps.
A deeper guide is provided in Usage details.
Methodologies are explained in detail in Features in detail.
For those of you who want to contribute see Notes to developers and the
API reference.

eDisGo was initially developed in the
open_eGo [https://openegoproject.wordpress.com] research project as part of
a grid planning tool that can be used to determine the optimal grid and storage
expansion of the German power grid over all voltage levels and has been used in
two publications of the project:

	Integrated Techno-Economic Power System Planning of Transmission and Distribution Grids [https://www.mdpi.com/1996-1073/12/11/2091]

	Final report of the open_eGo project (in German) [https://www.uni-flensburg.de/fileadmin/content/abteilungen/industrial/dokumente/downloads/veroeffentlichungen/forschungsergebnisse/20190426endbericht-openego-fkz0325881-final.pdf]

Contents

	Getting started
	Installation

	Prerequisites

	A minimum working example

	Parallelization

	LICENSE

	Usage details
	The fundamental data structure

	Identify grid issues

	Grid expansion

	Battery storage systems

	Curtailment

	Plots

	Results

	Features in detail
	Power flow analysis

	Multi period optimal power flow

	Grid expansion

	Curtailment

	Storage integration

	References

	Notes to developers
	Installation

	Code style

	Documentation

	Definition and units
	Sign Convention

	Reactive Power Sign Convention

	Units

	Default configuration data
	config_db_tables

	config_grid_expansion

	config_timeseries

	config_grid

	Equipment data

	API
	EDisGo class

	edisgo.network package

	edisgo.flex_opt package

	edisgo.io package

	edisgo.opf package

	edisgo.tools package

	What’s New
	Release v0.1.0

	Release v0.0.10

	Release v0.0.9

	Release v0.0.8

	Release v0.0.7

	Release v0.0.6

	Release v0.0.5

	Release v0.0.3

	Release v0.0.2

	Index

Getting started

Installation

Warning

Make sure to use python 3.7 or higher!

Install latest eDisGo version through pip. Therefore, we highly recommend using
a virtual environment and its pip.

pip3 install edisgo

The above will install all packages for the basic usage of eDisGo. To install
additional packages e.g. needed to create plots with background maps or to run
the jupyter notebook examples, we provide installation with extra packages:

pip3 install edisgo[geoplot] # for plotting with background maps
pip3 install edisgo[examples] # to run examples
pip3 install edisgo[dev] # developer packages
pip3 install edisgo[full] # combines all of the extras above

You may also consider installing a developer version as detailed in
Notes to developers.

Installation under Windows

For Windows users we recommend using Anaconda and to install the python package shapely
using the conda-forge channel prior to installing eDisGo. You may use the provided
eDisGo_env.yml file [https://github.com/openego/eDisGo/blob/features/refactoring/eDisGo_env.yml]
to do so. Download the file and create a virtual environment with:

conda env create -f path/to/eDisGo_env.yml

Activate the newly created environment with:

conda activate eDisGo_env

You can now install eDisGo using pip as described above, with or without extra
packages.

Requirements for edisgoOPF package

To use the multiperiod optimal power flow that is provided in the julia package
edisgoOPF in eDisGo you additionally need to install julia version 1.1.1.
Download julia from
julia download page [https://julialang.org/downloads/oldreleases/] and
add it to your path (see
platform specific instructions [https://julialang.org/downloads/platform/]
for more information).

Before using the edisgoOPF julia package for the first time you need to
instantiate it. Therefore, in a terminal change directory to the edisgoOPF
package located in eDisGo/edisgo/opf/edisgoOPF and call julia from there.
Change to package mode by typing

]

Then activate the package:

(v1.0) pkg> activate .

And finally instantiate it:

(SomeProject) pkg> instantiate

Additional linear solver

As with the default linear solver in Ipopt (local solver used in the OPF)
the limit for prolem sizes is reached quite quickly, you may want to instead use
the solver HSL_MA97.
The steps required to set up HSL are also described in the
Ipopt Documentation [https://coin-or.github.io/Ipopt/INSTALL.html#DOWNLOAD_HSL].
Here is a short version for reference:

First, you need to obtain an academic license for HSL Solvers.
Under http://www.hsl.rl.ac.uk/ipopt/ download the sources for Coin-HSL Full (Stable).
You will need to provide an institutional e-mail to gain access.

Unpack the tar.gz:

tar -xvzf coinhsl-2014.01.10.tar.gz

To install the solver, clone the Ipopt Third Party HSL tools:

git clone https://github.com/coin-or-tools/ThirdParty-HSL.git
cd ThirdParty-HSL

Under ThirdParty-HSL, create a folder for the HSL sources named coinhsl and
copy the contents of the HSL archive into it.
Under Ubuntu, you’ll need BLAS, LAPACK and GCC for Fortran. If you don’t have them, install them via:

sudo apt-get install libblas-dev liblapack-dev gfortran

You can then configure and install your HSL Solvers:

./configure
make
sudo make install

To make Ipopt pick up the solver, you need to add it to your path.
During install, there will be an output that tells you where the libraries have
been put. Usually like this:

Libraries have been installed in:
 /usr/local/lib

Add this path to the variable LD_LIBRARY_PATH:

export LD_LIBRARY="/usr/local/bin":$LD_LIBRARY_PATH

You might also want to add this to your .bashrc to make it persistent.

For some reason, Ipopt looks for a library named libhsl.so, which is not what
the file is named, so we’ll also need to provide a symlink:

cd /usr/local/lib
ln -s libcoinhsl.so libhsl.so

MA97 should now work and can be called from Julia with:

JuMP.setsolver(pm.model,IpoptSolver(linear_solver="ma97"))

Prerequisites

Beyond a running and up-to-date installation of eDisGo you need grid topology
data. Currently synthetic grid data generated with the python project
Ding0 [https://github.com/openego/ding0]
is the only supported data source. You can retrieve data from
Zenodo [https://zenodo.org/record/890479]
(make sure you choose latest data) or check out the
Ding0 documentation [https://dingo.readthedocs.io/en/dev/usage_details.html#ding0-examples]
on how to generate grids yourself.

A minimum working example

Following you find short examples on how to use eDisGo. Further details are
provided in Usage details. Further examples can be found in the
examples directory [https://github.com/openego/eDisGo/tree/features/refactoring/examples].

All following examples assume you have a ding0 grid topology (directory containing
csv files, defining the grid topology) in a directory “ding0_example_grid” in
the directory from where you run your example.

Aside from grid topology data you may eventually need a dataset on future
installation of power plants. You may therefore use the scenarios developed in
the open_eGo [https://openegoproject.wordpress.com] project that
are available in the
OpenEnergy DataBase (oedb) [https://openenergy-platform.org/dataedit/]
hosted on the OpenEnergy Platform (OEP) [https://oep.iks.cs.ovgu.de/].
eDisGo provides an interface to the oedb using the package
ego.io [https://github.com/openego/ego.io]. ego.io gives you a python
SQL-Alchemy representations of the oedb and access to it by using the
oedialect [https://github.com/openego/oedialect], an SQL-Alchemy dialect
used by the OEP.

You can run a worst-case scenario as follows:

from edisgo import EDisGo

Set up the EDisGo object that will import the grid topology, set up
feed-in and load time series (here for a worst case analysis)
and other relevant data
edisgo = EDisGo(ding0_grid='ding0_example_grid',
 worst_case_analysis='worst-case')

Import scenario for future generators from the oedb
edisgo.import_generators(generator_scenario='nep2035')

Conduct grid analysis (non-linear power flow using PyPSA)
edisgo.analyze()

Do grid reinforcement
edisgo.reinforce()

Determine costs for each line/transformer that was reinforced
costs = edisgo.results.grid_expansion_costs

Instead of conducting a worst-case analysis you can also provide specific
time series:

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object with your own time series
(these are dummy time series!)
timeindex specifies which time steps to consider in power flow
timeindex = pd.date_range('1/1/2011', periods=4, freq='H')
load time series (scaled by annual demand)
timeseries_load = pd.DataFrame(
 {'residential': [0.0001] * len(timeindex),
 'retail': [0.0002] * len(timeindex),
 'industrial': [0.00015] * len(timeindex),
 'agricultural': [0.00005] * len(timeindex)
 },
 index=timeindex)
feed-in time series of fluctuating generators (scaled by nominal power)
timeseries_generation_fluctuating = pd.DataFrame(
 {'solar': [0.2] * len(timeindex),
 'wind': [0.3] * len(timeindex)
 },
 index=timeindex)
feed-in time series of dispatchable generators (scaled by nominal power)
timeseries_generation_dispatchable = pd.DataFrame(
 {'biomass': [1] * len(timeindex),
 'coal': [1] * len(timeindex),
 'other': [1] * len(timeindex)
 },
 index=timeindex)

Set up the EDisGo object with your own time series and generator scenario
NEP2035
edisgo = EDisGo(
 ding0_grid='ding0_example_grid',
 generator_scenario='nep2035',
 timeseries_load=timeseries_load,
 timeseries_generation_fluctuating=timeseries_generation_fluctuating,
 timeseries_generation_dispatchable=timeseries_generation_dispatchable,
 timeindex=timeindex)

Do grid reinforcement
edisgo.reinforce()

Determine cost for each line/transformer that was reinforced
costs = edisgo.results.grid_expansion_costs

Time series for loads and fluctuating generators can also be automatically generated
using the provided API for the oemof demandlib and the OpenEnergy DataBase:

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object using the OpenEnergy DataBase and the oemof
demandlib to set up time series for loads and fluctuating generators
(time series for dispatchable generators need to be provided)
timeindex = pd.date_range('1/1/2011', periods=4, freq='H')
timeseries_generation_dispatchable = pd.DataFrame(
 {'biomass': [1] * len(timeindex),
 'coal': [1] * len(timeindex),
 'other': [1] * len(timeindex)
 },
 index=timeindex)

edisgo = EDisGo(
 ding0_grid='ding0_example_grid',
 generator_scenario='ego100',
 timeseries_load='demandlib',
 timeseries_generation_fluctuating='oedb',
 timeseries_generation_dispatchable=timeseries_generation_dispatchable,
 timeindex=timeindex)

Do grid reinforcement
edisgo.reinforce()

Determine cost for each line/transformer that was reinforced
costs = edisgo.results.grid_expansion_costs

Parallelization

Try run_edisgo_pool_flexible() for
parallelization of your custom function.

LICENSE

Copyright (C) 2018 Reiner Lemoine Institut gGmbH

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU Affero General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
details.

You should have received a copy of the GNU General Public License along with
this program. If not, see https://www.gnu.org/licenses/.

Usage details

As eDisGo is designed to serve as a toolbox, it provides several methods to
analyze distribution grids for grid issues and to evaluate measures responding these.
Below, we give a detailed introduction to the data structure and to how different
features can be used.

The fundamental data structure

It’s worth to understand how the fundamental data structure of eDisGo is
designed in order to make use of its entire features.

The class EDisGo serves as the top-level API for
setting up your scenario, invocation of data import, analysis of hosting
capacity, grid reinforcement and flexibility measures. It also provides
access to all relevant data.
Grid data is stored in the Topology class.
Time series data can be found in the TimeSeries
class. Results data holding results e.g. from the power flow analysis and grid
expansion is stored in the Results class.
Configuration data from the config files (see Default configuration data) is stored
in the Config class.
All these can be accessed through the EDisGo object. In the following
code examples edisgo constitues an EDisGo object.

Access Topology grid data container object
edisgo.topology

Access TimeSeries data container object
edisgo.timeseries

Access Results data container object
edisgo.results

Access configuration data container object
edisgo.config

Grid data is stored in pandas.DataFrames [http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]
in the Topology object.
There are extra data frames for all
grid elements (buses, lines, switches, transformers), as well as generators,
loads and storage units.
You can access those dataframes as follows:

Access all buses in MV grid and underlying LV grids
edisgo.topology.buses_df

Access all lines in MV grid and underlying LV grids
edisgo.topology.lines_df

Access all MV/LV transformers
edisgo.topology.transformers_df

Access all HV/MV transformers
edisgo.topology.transformers_hvmv_df

Access all switches in MV grid and underlying LV grids
edisgo.topology.switches_df

Access all generators in MV grid and underlying LV grids
edisgo.topology.generators_df

Access all loads in MV grid and underlying LV grids
edisgo.topology.loads_df

Access all storage units in MV grid and underlying LV grids
edisgo.topology.storage_units_df

The grids can also be accessed individually. The MV grid is stored in an
MVGrid object and each LV grid in an
LVGrid object.
The MV grid topology can be accessed through

Access MV grid
edisgo.topology.mv_grid

Its components can be accessed analog to those of the whole grid topology as shown above.

Access all buses in MV grid
edisgo.topology.mv_grid.buses_df

Access all generators in MV grid
edisgo.topology.mv_grid.generators_df

A list of all LV grids can be retrieved through:

Get list of all underlying LV grids
(Note that MVGrid.lv_grids returns a generator object that must first be
converted to a list in order to view the LVGrid objects)
list(edisgo.topology.mv_grid.lv_grids)

Access to a single LV grid’s components can be obtained analog to shown above for
the whole topology and the MV grid:

Get single LV grid
lv_grid = list(edisgo.topology.mv_grid.lv_grids)[0]

Access all buses in that LV grid
lv_grid.buses_df

Access all loads in that LV grid
lv_grid.loads_df

A single grid’s generators, loads, storage units and switches can also be
retrieved as Generator,
Load, Storage, and
Switch objects, respecitvely:

Get all switch disconnectors in MV grid as Switch objects
(Note that objects are returned as a python generator object that must
first be converted to a list in order to view the Switch objects)
list(edisgo.topology.mv_grid.switch_disconnectors)

Get all generators in LV grid as Generator objects
list(lv_grid.generators)

For some applications it is helpful to get a graph representation of the grid,
e.g. to find the path from the station to a generator. The graph representation
of the whole topology or each single grid can be retrieved as follows:

Get graph representation of whole topology
edisgo.to_graph()

Get graph representation for MV grid
edisgo.topology.mv_grid.graph

Get graph representation for LV grid
lv_grid.graph

The returned graph is a networkx.Graph [https://networkx.github.io/documentation/stable/reference/classes/graph.html#network.Graph], where lines are represented
by edges in the graph, and buses and transformers are represented by nodes.

Identify grid issues

As detailed in A minimum working example, once you set up your scenario by instantiating an
EDisGo object, you are ready for a grid analysis and identifying grid
issues (line overloading and voltage issues) using analyze():

Do non-linear power flow analysis for MV and LV grid
edisgo.analyze()

The analyze function conducts a non-linear power flow using PyPSA.

The range of time analyzed by the power flow analysis is by default defined by the
timeindex(), that can be given
as an input to the EDisGo object through the parameter timeindex or is
otherwise set automatically. If you want to change
the time steps that are analyzed, you can specify those through the parameter
timesteps of the analyze function.
Make sure that the specified time steps are a subset of
timeindex().

Grid expansion

Grid expansion can be invoked by reinforce():

Reinforce grid due to overloading and overvoltage issues
edisgo.reinforce()

You can further specify e.g. if to conduct a combined analysis for MV and LV
(regarding allowed voltage deviations) or if to only calculate grid expansion
needs without changing the topology of the graph. See
reinforce_grid() for more information.

Costs for the grid expansion measures can be obtained as follows:

Get costs of grid expansion
costs = edisgo.results.grid_expansion_costs

Further information on the grid reinforcement methodology can be found in section
Grid expansion.

Battery storage systems

Battery storage systems can be integrated into the grid as an alternative to
classical grid expansion.
The storage integration heuristic described in section
Storage integration is not available at the moment. Instead, you
may either integrate a storage unit at a specified bus manually or use the
optimal power flow to optimally distribute a given storage capacity in the grid.

Here are two small examples on how to integrate a storage unit manually. In the
first one, the EDisGo object is set up for a worst-case analysis, wherefore no
time series needs to be provided for the storage unit, as worst-case definition
is used. In the second example, a time series analysis is conducted, wherefore
a time series for the storage unit needs to be provided.

from edisgo import EDisGo

Set up EDisGo object
edisgo = EDisGo(ding0_grid=dingo_grid_path,
 worst_case_analysis='worst-case')

Get random bus to connect storage to
random_bus = edisgo.topology.buses_df.index[3]
Add storage instance
edisgo.add_component(
 "StorageUnit",
 bus=random_bus,
 p_nom=4)

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object using the OpenEnergy DataBase and the oemof
demandlib to set up time series for loads and fluctuating generators
(time series for dispatchable generators need to be provided)
timeindex = pd.date_range('1/1/2011', periods=4, freq='H')
timeseries_generation_dispatchable = pd.DataFrame(
 {'biomass': [1] * len(timeindex),
 'coal': [1] * len(timeindex),
 'other': [1] * len(timeindex)
 },
 index=timeindex)
edisgo = EDisGo(
 ding0_grid='ding0_example_grid',
 generator_scenario='ego100',
 timeseries_load='demandlib',
 timeseries_generation_fluctuating='oedb',
 timeseries_generation_dispatchable=timeseries_generation_dispatchable,
 timeindex=timeindex)

Get random bus to connect storage to
random_bus = edisgo.topology.buses_df.index[3]
Add storage instance
edisgo.add_component(
 "StorageUnit",
 bus=random_bus,
 p_nom=4,
 ts_active_power=pd.Series(
 [-3.4, 2.5, -3.4, 2.5],
 index=edisgo.timeseries.timeindex))

Following is an example on how to use the OPF to find the optimal storage
positions in the grid with regard to grid expansion costs. Storage operation
is optimized at the same time. The example uses the same EDisGo instance as
above. A total storage capacity of 10 MW is distributed in the grid. storage_buses
can be used to specify certain buses storage units may be connected to.
This does not need to be provided but will speed up the optimization.

random_bus = edisgo.topology.buses_df.index[3:13]
edisgo.perform_mp_opf(
 timesteps=period,
 scenario="storage",
 storage_units=True,
 storage_buses=busnames,
 total_storage_capacity=10.0,
 results_path=results_path)

Curtailment

The curtailment function is used to spatially distribute the power that is to be curtailed.
The two heuristics feedin-proportional and voltage-based, in detail explained
in section Curtailment, are currently not available.
Instead you may use the optimal power flow to find the optimal generator
curtailment with regard to minimizing grid expansion costs for given
curtailment requirements. The following example again uses the EDisGo object
from above.

edisgo.perform_mp_opf(
 timesteps=period,
 scenario='curtailment',
 results_path=results_path,
 curtailment_requirement=True,
 curtailment_requirement_series=[10, 20, 15, 0])

Plots

EDisGo provides a bunch of predefined plots to e.g. plot the MV grid topology,
line loading and node voltages in the MV grid or as a histograms.

plot MV grid topology on a map
edisgo.plot_mv_grid_topology()

plot grid expansion costs for lines in the MV grid and stations on a map
edisgo.plot_mv_grid_expansion_costs()

plot voltage histogram
edisgo.histogram_voltage()

See EDisGo class for more plots and plotting options.

Results

Results such as voltages at nodes and line loading from the power flow analysis as well as
grid expansion costs are provided through the Results class
and can be accessed the following way:

edisgo.results

Get voltages at nodes from v_res()
and line loading from s_res() or
i_res.
equipment_changes holds details about measures
performed during grid expansion. Associated costs can be obtained through
grid_expansion_costs.
Flexibility measures may not entirely resolve all issues.
These unresolved issues are listed in unresolved_issues.

Results can be saved to csv files with:

edisgo.results.save('path/to/results/directory/')

See save() for more information.

Features in detail

Power flow analysis

In order to analyse voltages and line loadings a non-linear power flow analysis (PF) using pypsa is conducted.
All loads and generators are modelled as PQ nodes; the slack is modelled as a PV node with a set voltage of 1,p.u.
and positioned at the substation’s secondary side.

Multi period optimal power flow

Todo

Add

Grid expansion

General methodology

The grid expansion methodology is conducted in reinforce_grid().

The order grid expansion measures are conducted is as follows:

	Reinforce stations and lines due to overloading issues

	Reinforce lines in MV grid due to voltage issues

	Reinforce distribution substations due to voltage issues

	Reinforce lines in LV grid due to voltage issues

	Reinforce stations and lines due to overloading issues

Reinforcement of stations and lines due to overloading issues is performed twice, once in the beginning and again after fixing voltage issues,
as the changed power flows after reinforcing the grid may lead to new overloading issues. How voltage and overloading issues are identified and
solved is shown in figure Grid expansion measures and further explained in the following sections.

[image: _images/grid_expansion_measures.png]

Fig. 1 Grid expansion measures

reinforce_grid() offers a few additional options. It is e.g. possible to conduct grid
reinforcement measures on a copy
of the graph so that the original grid topology is not changed. It is also possible to only identify necessary
reinforcement measures for two worst-case snapshots in order to save computing time and to set combined or separate
allowed voltage deviation limits for MV and LV.
See documentation of reinforce_grid() for more information.

Identification of overloading and voltage issues

Identification of overloading and voltage issues is conducted in
check_tech_constraints.

Voltage issues are determined based on allowed voltage deviations set in the config file
config_grid_expansion in section grid_expansion_allowed_voltage_deviations. It is possible
to set one allowed voltage deviation that is used for MV and LV or define separate allowed voltage deviations.
Which allowed voltage deviation is used is defined through the parameter combined_analysis of reinforce_grid().
By default combined_analysis is set to false, resulting in separate voltage limits for MV and LV, as a combined limit
may currently lead to problems if voltage deviation in MV grid is already close to the allowed limit, in which case the remaining allowed voltage deviation in the LV grids is close to zero.

Overloading is determined based on allowed load factors that are also defined in the config file
config_grid_expansion in section grid_expansion_load_factors.

Allowed voltage deviations as well as load factors are in most cases different for load and feed-in case.
Load and feed-in case are commonly used worst-cases for grid expansion analyses.
Load case defines a situation where all loads in the grid have a high demand while feed-in by generators is low
or zero. In this case power is flowing from the high-voltage grid to the distribution grid.
In the feed-in case there is a high generator feed-in and a small energy demand leading to a reversed power flow.
Load and generation assumptions for the two worst-cases are definded in the config file
config_timeseries in section worst_case_scale_factor (scale factors describe actual power
to nominal power ratio of generators and loads).

When conducting grid reinforcement based on given time series instead of worst-case assumptions, load and feed-in
case also need to be definded to determine allowed voltage deviations and load factors.
Therefore, the two cases are identified based on the generation and load time series of all loads and generators
in the grid and defined as follows:

	Load case: positive ([image: \sum load] - [image: \sum generation])

	Feed-in case: negative ([image: \sum load] - [image: \sum generation]) -> reverse power flow at HV/MV substation

Grid losses are not taken into account. See timesteps_load_feedin_case() for more
details and implementation.

Check line load

Exceedance of allowed line load of MV and LV lines is checked in mv_line_load() and
lv_line_load(), respectively.
The functions use the given load factor and the maximum allowed current given by the manufacturer (see I_max_th in tables LV cables,
MV cables and MV overhead lines) to calculate the allowed
line load of each LV and MV line. If the line load calculated in the power flow analysis exceeds the allowed line
load, the line is reinforced (see Reinforce lines due to overloading issues).

Check station load

Exceedance of allowed station load of HV/MV and MV/LV stations is checked in hv_mv_station_load() and
mv_lv_station_load(), respectively.
The functions use the given load factor and the maximum allowed apparent power given by the manufacturer (see S_nom in tables LV transformers,
and MV transformers) to calculate the allowed
apparent power of the stations. If the apparent power calculated in the power flow analysis exceeds the allowed apparent power the station is reinforced
(see Reinforce stations due to overloading issues).

Check line and station voltage deviation

Compliance with allowed voltage deviation limits in MV and LV grids is checked in mv_voltage_deviation() and
lv_voltage_deviation(), respectively.
The functions check if the voltage deviation at a node calculated in the power flow analysis exceeds the allowed voltage deviation. If it does,
the line is reinforced (see Reinforce MV/LV stations due to voltage issues or
Reinforce lines due to voltage).

Grid expansion measures

Reinforcement measures are conducted in reinforce_measures. Whereas overloading issues can usually be solved in one step, except for
some cases where the lowered grid impedance through reinforcement measures leads to new issues, voltage issues can only be solved iteratively. This means that after each reinforcement
step a power flow analysis is conducted and the voltage rechecked. An upper limit for how many iteration steps should be performed is set in order to avoid endless iteration. By
default it is set to 10 but can be changed using the parameter max_while_iterations of reinforce_grid().

Reinforce lines due to overloading issues

Line reinforcement due to overloading is conducted in reinforce_lines_overloading().
In a first step a parallel line of the same line type is installed. If this does not solve the overloading issue as many parallel standard lines as needed are installed.

Reinforce stations due to overloading issues

Reinforcement of HV/MV and MV/LV stations due to overloading is conducted in reinforce_hv_mv_station_overloading() and
reinforce_mv_lv_station_overloading(), respectively.
In a first step a parallel transformer of the same type as the existing transformer is installed. If there is more than one transformer in the station the smallest transformer
that will solve the overloading issue is used. If this does not solve the overloading issue as many parallel standard transformers as needed are installed.

Reinforce MV/LV stations due to voltage issues

Reinforcement of MV/LV stations due to voltage issues is conducted in reinforce_mv_lv_station_voltage_issues().
To solve voltage issues, a parallel standard transformer is installed.

After each station with voltage issues is reinforced, a power flow analysis is conducted and the voltage rechecked. If there are still voltage issues
the process of installing
a parallel standard transformer and conducting a power flow analysis is repeated until voltage issues are solved or until the maximum number of allowed iterations is reached.

Reinforce lines due to voltage

Reinforcement of lines due to voltage issues is conducted in reinforce_lines_voltage_issues().
In the case of several voltage issues the path to the node with the highest voltage deviation is reinforced first. Therefore, the line between the secondary side of the station and the
node with the highest voltage deviation is disconnected at a distribution substation after 2/3 of the path length. If there is no distribution substation where the line can be
disconnected, the node is directly connected to the busbar. If the node is already directly connected to the busbar a parallel standard line is installed.

Only one voltage problem for each feeder is considered at a time since each measure effects the voltage of each node in that feeder.

After each feeder with voltage problems has been considered, a power flow analysis is conducted and the voltage rechecked. The process of solving voltage issues is repeated until voltage issues are solved
or until the maximum number of allowed iterations is reached.

Grid expansion costs

Total grid expansion costs are the sum of costs for each added transformer and line.
Costs for lines and transformers are only distinguished by the voltage level they are installed in
and not by the different types.
In the case of lines it is further taken into account wether the line is installed in a rural or an urban area, whereas rural areas
are areas with a population density smaller or equal to 500 people per km² and urban areas are defined as areas
with a population density higher than 500 people per km² [DENA].
The population density is calculated by the population and area of the grid district the line is in (See Grid).

Costs for lines of aggregated loads and generators are not considered in the costs calculation since grids of
aggregated areas are not modeled but aggregated loads and generators are directly connected to the MV busbar.

Curtailment

Warning

The curtailment methods are not yet adapted to the refactored code and therefore currently do not work.

eDisGo right now provides two curtailment methodologies called ‘feedin-proportional’ and ‘voltage-based’, that are implemented in
curtailment.
Both methods are intended to take a given curtailment target obtained from an optimization of the EHV and HV grids using
eTraGo [https://github.com/openego/eTraGo] and allocate it to the generation units in the grids. Curtailment targets can be specified for all
wind and solar generators,
by generator type (solar or wind) or by generator type in a given weather cell.
It is also possible to curtail specific generators internally, though a user friendly implementation is still in the works.

‘feedin-proportional’

The ‘feedin-proportional’ curtailment is implemented in feedin_proportional().
The curtailment that has to be met in each time step is allocated equally to all generators depending on their share of total
feed-in in that time step.

[image: c_{g,t} = \frac{a_{g,t}}{\sum\limits_{g \in gens} a_{g,t}} \times c_{target,t} ~ ~ \forall t\in timesteps]

where [image: c_{g,t}] is the curtailed power of generator [image: g] in timestep [image: t], [image: a_{g,t}] is the weather-dependent availability
of generator [image: g] in timestep [image: t] and [image: c_{target,t}] is the given curtailment target (power) for timestep [image: t] to be allocated
to the generators.

‘voltage-based’

The ‘voltage-based’ curtailment is implemented in voltage_based().
The curtailment that has to be met in each time step is allocated to all generators depending on
the exceedance of the allowed voltage deviation at the nodes of the generators. The higher the exceedance, the higher
the curtailment.

The optional parameter voltage_threshold specifies the threshold for the exceedance of the allowed voltage deviation above
which a generator is curtailed. By default it is set to zero, meaning that all generators at nodes with voltage deviations
that exceed the allowed voltage deviation are curtailed. Generators at nodes where the allowed voltage deviation is not
exceeded are not curtailed. In the case that the required
curtailment exceeds the weather-dependent availability of all generators with voltage deviations above the specified threshold,
the voltage threshold is lowered in steps of 0.01 p.u. until the curtailment target can be met.

Above the threshold, the curtailment is proportional to the exceedance of the allowed voltage deviation.

[image: \frac{c_{g,t}}{a_{g,t}} = n \cdot (V_{g,t} - V_{threshold, g, t}) + offset]

where [image: c_{g,t}] is the curtailed power of generator [image: g] in timestep [image: t], [image: a_{g,t}] is the weather-dependent availability
of generator [image: g] in timestep [image: t], [image: V_{g,t}] is the voltage at generator [image: g] in timestep [image: t] and
[image: V_{threshold, g, t}] is the voltage threshold for generator [image: g] in timestep [image: t]. [image: V_{threshold, g, t}] is calculated as follows:

[image: V_{threshold, g, t} = V_{g_{station}, t} + \Delta V_{g_{allowed}} + \Delta V_{offset, t}]

where [image: V_{g_{station}, t}] is the voltage at the station’s secondary side, [image: \Delta V_{g_{allowed}}] is the allowed voltage
deviation in the reverse power flow and [image: \Delta V_{offset, t}] is the exceedance of the allowed voltage deviation above which generators are curtailed.

[image: n] and [image: offset] in the equation above are slope and y-intercept of a linear relation between
the curtailment and the exceedance of the allowed voltage deviation. They are calculated by solving the following linear problem that penalizes the offset
using the python package pyomo:

[image: min \left(\sum\limits_{t} offset_t\right)]

[image: s.t. \sum\limits_{g} c_{g,t} = c_{target,t} ~ \forall g \in (solar, wind) \\ c_{g,t} \leq a_{g,t} \forall g \in (solar, wind),t]

where [image: c_{target,t}] is the given curtailment target (power) for timestep [image: t] to be allocated
to the generators.

Storage integration

Warning

The storage integration methods described below are not yet adapted to the refactored code and therefore currently do not work.

Besides the possibility to connect a storage with a given operation to any node in the grid, eDisGo provides a methodology that takes
a given storage capacity and allocates it to multiple smaller storages such that it reduces line overloading and voltage deviations.
The methodology is implemented in one_storage_per_feeder(). As the above described
curtailment allocation methodologies it is intended to be used in combination with eTraGo [https://github.com/openego/eTraGo] where
storage capacity and operation is optimized.

For each feeder with load or voltage issues it is checked if integrating a
storage will reduce peaks in the feeder, starting with the feeder with
the highest theoretical grid expansion costs. A heuristic approach is used
to estimate storage sizing and siting while storage operation is carried
over from the given storage operation.

A more thorough documentation will follow soon.

References

	DENA

	A.C. Agricola et al.:
dena-Verteilnetzstudie: Ausbau- und Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030. 2012.

Notes to developers

Installation

Clone repository from GitHub [https://github.com/openego/edisgo] and install
in developer mode:

pip3 install -e <path-to-repo>[full]

Code style

	
	Documentation of `@property` functions: Put documentation of getter and

	setter both in Docstring of getter, see
on Stackoverflow [https://stackoverflow.com/a/16025754/6385207]

	
	Order of public/private/protected methods, property decorators, etc. in a

	class: TBD

Documentation

Build the docs locally by first setting up the sphinx environment with (executed
from top-level folder)

sphinx-apidoc -f -o doc/api edisgo

And then you build the html docs on your computer with

sphinx-build -E -a doc/ doc/_html

Definition and units

Sign Convention

Generators and Loads in an AC power system can behave either like an inductor or a capacitor. Mathematically,
this has two different sign conventions, either from the generator perspective or from the load perspective.
This is defined by the direction of power flow from the component.

Both sign conventions are used in eDisGo depending upon the components being defined, similar to pypsa.

Generator Sign Convention

[image: _images/cosphi-sign-convention_generation.png]

Fig. 2 Generator sign convention in detail

While defining time series for Generator, GeneratorFluctuating,
and Storage, the generator sign convention is used.

Load Sign Convention

[image: _images/cosphi-sign-convention_load.png]

Fig. 3 Load sign convention in detail

The time series for Load is defined using the load sign convention.

Reactive Power Sign Convention

Generators and Loads in an AC power system can behave either like an inductor or a capacitor. Mathematically,
this has two different sign conventions, either from the generator perspective or from the load perspective.

Both sign conventions are used in eDisGo, similar to pypsa. While defining time series for
Generator, GeneratorFluctuating, and
Storage, the generator sign convention is used. This means that when
the reactive power (Q) is positive, the component shows capacitive behaviour and when the reactive power (Q) is
negative, the component shows inductive behaviour.

The time series for Load is defined using the load sign convention. This means
that when the reactive power (Q) is positive, the component shows inductive behaviour and when the
reactive power (Q) is negative, the component shows capacitive behaviour. This is the direct opposite of the
generator sign convention.

Units

Table 1 List of variables and units

	Variable

	Symbol

	Unit

	Comment

	Current

	I

	kA

	

	Length

	l

	km

	

	Active Power

	P

	MW

	

	Reactive Power

	Q

	MVar

	

	Apparent Power

	S

	MVA

	

	Resistance

	R

	Ohm or Ohm/km

	Ohm/km applies to lines

	Reactance

	X

	Ohm or Ohm/km

	Ohm/km applies to lines

	Voltage

	V

	kV

	

	Inductance

	L

	mH/km

	

	Capacitance

	C

	µF/km

	

	Costs

	
	

	kEUR

	

Default configuration data

Following you find the default configuration files.

config_db_tables

The config file config_db_tables.cfg holds data about which database connection
to use from your saved database connections and which dataprocessing version.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

[data_source]

oedb_data_source = versioned

[model_draft]

conv_generators_prefix = t_ego_supply_conv_powerplant_
conv_generators_suffix = _mview
re_generators_prefix = t_ego_supply_res_powerplant_
re_generators_suffix = _mview
res_feedin_data = EgoRenewableFeedin
load_data = EgoDemandHvmvDemand
load_areas = EgoDemandLoadarea

#conv_generators_nep2035 = t_ego_supply_conv_powerplant_nep2035_mview
#conv_generators_ego100 = ego_supply_conv_powerplant_ego100_mview
#re_generators_nep2035 = t_ego_supply_res_powerplant_nep2035_mview
#re_generators_ego100 = t_ego_supply_res_powerplant_ego100_mview

[versioned]

conv_generators_prefix = t_ego_dp_conv_powerplant_
conv_generators_suffix = _mview
re_generators_prefix = t_ego_dp_res_powerplant_
re_generators_suffix = _mview
res_feedin_data = EgoRenewableFeedin
load_data = EgoDemandHvmvDemand
load_areas = EgoDemandLoadarea

version = v0.4.5

config_grid_expansion

The config file config_grid_expansion.cfg holds data mainly needed to determine
grid expansion needs and costs - these are standard equipment to use in grid expansion and
its costs, as well as allowed voltage deviations and line load factors.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

[grid_expansion_standard_equipment]

standard equipment
==================
Standard equipment for grid expansion measures. Source: Rehtanz et. al.: "Verteilnetzstudie für das Land Baden-Württemberg", 2017.
hv_mv_transformer = 40 MVA
mv_lv_transformer = 630 kVA
mv_line = NA2XS2Y 3x1x185 RM/25
lv_line = NAYY 4x1x150

[grid_expansion_allowed_voltage_deviations]

allowed voltage deviations
==========================
relevant for all cases
feedin_case_lower = 0.9
load_case_upper = 1.1

COMBINED MV+LV

hv_mv_trafo_offset:
offset which is set at HV-MV station
(pos. if op. voltage is increased, neg. if decreased)
hv_mv_trafo_offset = 0.0

hv_mv_trafo_control_deviation:
control deviation of HV-MV station
(always pos. in config; pos. or neg. usage depending on case in edisgo)
hv_mv_trafo_control_deviation = 0.0

mv_lv_max_v_deviation:
max. allowed voltage deviation according to DIN EN 50160
caution: offset and control deviation at HV-MV station must be considered in calculations!
mv_lv_feedin_case_max_v_deviation = 0.1
mv_lv_load_case_max_v_deviation = 0.1

MV ONLY

mv_load_case_max_v_deviation:
max. allowed voltage deviation in MV grids (load case)
mv_load_case_max_v_deviation = 0.015

mv_feedin_case_max_v_deviation:
max. allowed voltage deviation in MV grids (feedin case)
according to BDEW
mv_feedin_case_max_v_deviation = 0.05

LV ONLY

max. allowed voltage deviation in LV grids (load case)
lv_load_case_max_v_deviation = 0.065

max. allowed voltage deviation in LV grids (feedin case)
according to VDE-AR-N 4105
lv_feedin_case_max_v_deviation = 0.035

max. allowed voltage deviation in MV/LV stations (load case)
mv_lv_station_load_case_max_v_deviation = 0.02

max. allowed voltage deviation in MV/LV stations (feedin case)
mv_lv_station_feedin_case_max_v_deviation = 0.015

[grid_expansion_load_factors]

load factors
============
Source: Rehtanz et. al.: "Verteilnetzstudie für das Land Baden-Württemberg", 2017.
mv_load_case_transformer = 0.5
mv_load_case_line = 0.5
mv_feedin_case_transformer = 1.0
mv_feedin_case_line = 1.0

lv_load_case_transformer = 1.0
lv_load_case_line = 1.0
lv_feedin_case_transformer = 1.0
lv_feedin_case_line = 1.0

costs
============

[costs_cables]

costs in kEUR/km
costs for cables without earthwork are taken from [1] (costs for standard
cables are used here as representative since they have average costs), costs
including earthwork are taken from [2]
[1] https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Netzentgelte/Anreizregulierung/GA_AnalytischeKostenmodelle.pdf?__blob=publicationFile&v=1
[2] https://shop.dena.de/fileadmin/denashop/media/Downloads_Dateien/esd/9100_dena-Verteilnetzstudie_Abschlussbericht.pdf
costs including earthwork costs depend on population density according to [2]
here "rural" corresponds to a population density of <= 500 people/km²
and "urban" corresponds to a population density of > 500 people/km²
lv_cable = 9
lv_cable_incl_earthwork_rural = 60
lv_cable_incl_earthwork_urban = 100
mv_cable = 20
mv_cable_incl_earthwork_rural = 80
mv_cable_incl_earthwork_urban = 140

[costs_transformers]

costs in kEUR, source: DENA Verteilnetzstudie
lv = 10
mv = 1000

config_timeseries

The config file config_timeseries.cfg holds data to define the two worst-case
scenarions heavy load flow (‘load case’) and reverse power flow (‘feed-in case’)
used in conventional grid expansion planning, power factors and modes (inductive
or capacitative) to generate reactive power time series, as well as configurations
of the demandlib in case load time series are generated using the oemof demandlib.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

This file contains relevant data to generate load and feed-in time series.
Scale factors are used in worst-case scenarios.
Power factors are used to generate reactive power time series.

[worst_case_scale_factor]

scale factors
===========================
scale factors describe actual power to nominal power ratio of generators and loads in worst-case scenarios
following values provided by "dena-Verteilnetzstudie. Ausbau- und
Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030", .p. 98

mv_feedin_case_load = 0.15
lv_feedin_case_load = 0.1
mv_load_case_load = 1.0
lv_load_case_load = 1.0

feedin_case_feedin_pv = 0.85
feedin_case_feedin_wind = 1
feedin_case_feedin_other = 1
load_case_feedin_pv = 0
load_case_feedin_wind = 0
load_case_feedin_other = 0

temporary own values
feedin_case_storage = 1
load_case_storage = -1

[reactive_power_factor]

power factors
===========================
power factors used to generate reactive power time series for loads and generators

mv_gen = 0.9
mv_load = 0.9
mv_storage = 0.9
lv_gen = 0.95
lv_load = 0.95
lv_storage = 0.95

[reactive_power_mode]

power factor modes
===========================
power factor modes used to generate reactive power time series for loads and generators

mv_gen = inductive
mv_load = inductive
mv_storage = inductive
lv_gen = inductive
lv_load = inductive
lv_storage = inductive

[demandlib]

demandlib data
===========================
data used in the demandlib to generate industrial load profile
see IndustrialProfile in https://github.com/oemof/demandlib/blob/master/demandlib/particular_profiles.py
for further information

scaling factors for night and day of weekdays and weekend days
week_day = 0.8
week_night = 0.6
weekend_day = 0.6
weekend_night = 0.6
tuple specifying the beginning/end of a workday (e.g. 18:00)
day_start = 6:00
day_end = 22:00

config_grid

The config file config_grid.cfg holds data to specify parameters used when
connecting new generators to the grid and where to position disconnecting points.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

Config file to specify parameters used when connecting new generators to the grid and
where to position disconnecting points.

[geo]

WGS84: 4326
srid = 4326

[grid_connection]

branch_detour_factor:
normally, lines do not go straight from A to B due to obstacles etc. Therefore, a detour factor is used.
unit: -
branch_detour_factor = 1.3

conn_buffer_radius:
radius used to find connection targets
unit: m
conn_buffer_radius = 2000

conn_buffer_radius_inc:
radius which is incrementally added to connect_buffer_radius as long as no target is found
unit: m
conn_buffer_radius_inc = 1000

conn_diff_tolerance:
threshold which is used to determine if 2 objects are on the same position
unit: -
conn_diff_tolerance = 0.0001

[disconnecting_point]

Positioning of disconnecting points: Can be position at location of most
balanced load or generation. Choose load, generation, loadgen
position = load

Equipment data

The following tables hold all data of cables, lines and transformers used.

Table 2 LV cables

	name

	U_n

	I_max_th

	R_per_km

	L_per_km

	#-

	kV

	kA

	ohm/km

	mH/km

	NAYY 4x1x300

	0.4

	0.419

	0.1

	0.279

	NAYY 4x1x240

	0.4

	0.364

	0.125

	0.254

	NAYY 4x1x185

	0.4

	0.313

	0.164

	0.256

	NAYY 4x1x150

	0.4

	0.275

	0.206

	0.256

	NAYY 4x1x120

	0.4

	0.245

	0.253

	0.256

	NAYY 4x1x95

	0.4

	0.215

	0.320

	0.261

	NAYY 4x1x50

	0.4

	0.144

	0.449

	0.270

	NAYY 4x1x35

	0.4

	0.123

	0.868

	0.271

Table 3 MV cables

	name

	U_n

	I_max_th

	R_per_km

	L_per_km

	C_per_km

	#-

	kV

	kA

	ohm/km

	mH/km

	uF/km

	NA2XS2Y 3x1x185 RM/25

	10

	0.357

	0.164

	0.38

	0.41

	NA2XS2Y 3x1x240 RM/25

	10

	0.417

	0.125

	0.36

	0.47

	NA2XS2Y 3x1x300 RM/25

	10

	0.466

	0.1

	0.35

	0.495

	NA2XS2Y 3x1x400 RM/35

	10

	0.535

	0.078

	0.34

	0.57

	NA2XS2Y 3x1x500 RM/35

	10

	0.609

	0.061

	0.32

	0.63

	NA2XS2Y 3x1x150 RE/25

	20

	0.319

	0.206

	0.4011

	0.24

	NA2XS2Y 3x1x240

	20

	0.417

	0.13

	0.3597

	0.304

	NA2XS(FL)2Y 3x1x300 RM/25

	20

	0.476

	0.1

	0.37

	0.25

	NA2XS(FL)2Y 3x1x400 RM/35

	20

	0.525

	0.078

	0.36

	0.27

	NA2XS(FL)2Y 3x1x500 RM/35

	20

	0.598

	0.06

	0.34

	0.3

Table 4 MV overhead lines

	name

	U_n

	I_max_th

	R_per_km

	L_per_km

	C_per_km

	#-

	kV

	kA

	ohm/km

	mH/km

	uF/km

	48-AL1/8-ST1A

	10

	0.21

	0.35

	1.11

	0.0104

	94-AL1/15-ST1A

	10

	0.35

	0.33

	1.05

	0.0112

	122-AL1/20-ST1A

	10

	0.41

	0.31

	0.99

	0.0115

	48-AL1/8-ST1A

	20

	0.21

	0.37

	1.18

	0.0098

	94-AL1/15-ST1A

	20

	0.35

	0.35

	1.11

	0.0104

	122-AL1/20-ST1A

	20

	0.41

	0.34

	1.08

	0.0106

Table 5 LV transformers

	name

	S_nom

	u_kr

	P_k

	#

	MVA

	%

	MW

	100 kVA

	0.1

	4

	0.00175

	160 kVA

	0.16

	4

	0.00235

	250 kVA

	0.25

	4

	0.00325

	400 kVA

	0.4

	4

	0.0046

	630 kVA

	0.63

	4

	0.0065

	800 kVA

	0.8

	6

	0.0084

	1000 kVA

	1.0

	6

	0.00105

Table 6 MV transformers

	name

	S_nom

	#

	MVA

	20 MVA

	20

	32 MVA

	32

	40 MVA

	40

	63 MVA

	63

API

	EDisGo class

	edisgo.network package
	edisgo.network.components module

	edisgo.network.grids module

	edisgo.network.results module

	edisgo.network.timeseries module

	edisgo.network.topology module

	edisgo.flex_opt package
	edisgo.flex_opt.check_tech_constraints module

	edisgo.flex_opt.costs module

	edisgo.flex_opt.exceptions module

	edisgo.flex_opt.reinforce_grid module

	edisgo.flex_opt.reinforce_measures module

	edisgo.io package
	edisgo.io.ding0_import module

	edisgo.io.generators_import module

	edisgo.io.pypsa_io module

	edisgo.io.timeseries_import module

	edisgo.opf package
	edisgo.opf.run_mp_opf module

	edisgo.opf.timeseries_reduction module

	edisgo.opf.results package

	edisgo.opf.util package

	edisgo.tools package
	edisgo.tools.config module

	edisgo.tools.edisgo_run module

	edisgo.tools.geo module

	edisgo.tools.plots module

	edisgo.tools.powermodels_io module

	edisgo.tools.preprocess_pypsa_opf_structure module

	edisgo.tools.tools module

	Module contents

EDisGo class

edisgo.network package

edisgo.network.components module

edisgo.network.grids module

edisgo.network.results module

edisgo.network.timeseries module

edisgo.network.topology module

edisgo.flex_opt package

edisgo.flex_opt.check_tech_constraints module

edisgo.flex_opt.costs module

edisgo.flex_opt.exceptions module

edisgo.flex_opt.reinforce_grid module

edisgo.flex_opt.reinforce_measures module

edisgo.io package

edisgo.io.ding0_import module

edisgo.io.generators_import module

edisgo.io.pypsa_io module

edisgo.io.timeseries_import module

edisgo.opf package

edisgo.opf.run_mp_opf module

edisgo.opf.timeseries_reduction module

edisgo.opf.results package

edisgo.opf.util package

edisgo.tools package

edisgo.tools.config module

edisgo.tools.edisgo_run module

edisgo.tools.geo module

edisgo.tools.plots module

edisgo.tools.powermodels_io module

edisgo.tools.preprocess_pypsa_opf_structure module

edisgo.tools.tools module

Module contents

What’s New

Changelog for each release.

	Release v0.1.0

	Release v0.0.10

	Release v0.0.9

	Release v0.0.8

	Release v0.0.7

	Release v0.0.6

	Release v0.0.5

	Release v0.0.3

	Release v0.0.2

Release v0.1.0

Release date: July 26, 2021

This release comes with some major refactoring. The internal data structure
of the network topologies was changed from a networkx graph structure to
a pandas dataframe structure based on the
PyPSA [https://pypsa.readthedocs.io/en/latest/] data structure. This comes
along with major API changes.
Not all functionality of the previous eDisGo release 0.0.10 is yet refactored
(e.g. the heuristics for grid supportive storage integration and generator
curtailment), but we are working on it and the upcoming releases will
have the full functionality again.

Besides the refactoring we added extensive tests along with automatic testing
with GitHub Actions and coveralls tool to track test coverage.

Further, from now on python 3.6 is not supported anymore. Supported python
versions are 3.7, 3.8 and 3.9.

Changes

	Major refactoring #159 [https://github.com/openego/eDisGo/pull/159]

	Added support for Python 3.7, 3.8 and 3.9 #181 [https://github.com/openego/eDisGo/pull/181]

	Added GitHub Actions for testing and coverage #180 [https://github.com/openego/eDisGo/pull/180]

	Adapted to new ding0 release #184 [https://github.com/openego/eDisGo/pull/184] - loads and generators in the same building are now connected to the same bus instead of separate buses and loads and generators in aggregated load areas are connected via a MV/LV station instead of directly to the HV/MV station)

	Added charging points as new components along with a methodology to integrate them into the grid

	Added multiperiod optimal power flow based on julia package PowerModels.jl optimizing storage positioning and/or operation as well as generator dispatch with regard to minimizing grid expansion costs

Release v0.0.10

Release date: October 18, 2019

Changes

	Updated to networkx 2.0

	Changed data of transformers #240 [https://github.com/openego/ding0/issues/240]

	Proper session handling and readonly usage (PR #160 [https://github.com/openego/eDisGo/pull/160])

Bug fixes

	Corrected calculation of current from pypsa power flow results (PR #153 [https://github.com/openego/eDisGo/pull/153]).

Release v0.0.9

Release date: December 3, 2018

Changes

	bug fix in determining voltage deviation in LV stations and LV grid

Release v0.0.8

Release date: October 29, 2018

Changes

	added tolerance for curtailment targets slightly higher than generator availability to allow small
rounding errors

Release v0.0.7

Release date: October 23, 2018

This release mainly focuses on new plotting functionalities and making reimporting saved results
to further analyze and visualize them more comfortable.

Changes

	new plotting methods in the EDisGo API class (plottings of the MV grid topology showing line loadings,
grid expansion costs, voltages and/or integrated storages and histograms
for voltages and relative line loadings)

	new classes EDisGoReimport, NetworkReimport and ResultsReimport to reimport saved results
and enable all analysis and plotting functionalities offered by the original classes

	bug fixes

Release v0.0.6

Release date: September 6, 2018

This release comes with a bunch of new features such as results output and visualization, speed-up options, a new storage
integration methodology and an option to provide separate allowed voltage deviations for calculation of grid expansion needs.
See list of changes below for more details.

Changes

	A methodolgy to integrate storages in the MV grid to reduce grid expansion costs was added that takes a given storage capacity and operation and allocates it to multiple smaller storages.
This methodology is mainly to be used together with the eTraGo tool [https://github.com/openego/eTraGo] where an optimization of the HV and EHV levels is conducted to calculate
optiomal storage size and operation at each HV/MV substation.

	The voltage-based curtailment methodolgy was adapted to take into account allowed voltage deviations and curtail generators with voltages that exceed the allowed voltage deviation
more than generators with voltages that do not exceed the allowed voltage deviation.

	When conducting grid reinforcement it is now possible to apply separate allowed voltage deviations for different voltage levels (#108 [https://github.com/openego/eDisGo/issues/108]).
Furthermore, an additional check was added at the end of the grid expansion methodology if the 10%-criterion was observed.

	To speed up calculations functions to update the pypsa representation of the edisgo graph after generator import, storage integration and time series update, e.g. after curtailment, were added.

	Also as a means to speed up calculations an option to calculate grid expansion costs for the two worst time steps, characterized by highest and lowest residual load at the HV/MV substation,
was added.

	For the newly added storage integration methodology it was necessary to calculate grid expansion costs without changing the topology of the graph in order to identify feeders with
high grid expansion needs. Therefore, the option to conduct grid reinforcement on a copy of the graph was added to the grid expansion function.

	So far loads and generators always provided or consumed inductive reactive power with the specified power factor. It is now possible to specify whether loads and generators should
behave as inductors or capacitors and to provide a concrete reactive power time series(#131 [https://github.com/openego/eDisGo/issues/131]).

	The Results class was extended by outputs for storages, grid losses and active and reactive power at the HV/MV substation (#138 [https://github.com/openego/eDisGo/issues/138])
as well as by a function to save all results to csv files.

	A plotting function to plot line loading in the MV grid was added.

	Update ding0 version to v0.1.8 [https://github.com/openego/ding0/releases/tag/v0.1.8] and include
data processing v0.4.5 data [https://github.com/openego/data_processing/releases/tag/v0.4.5]

	Bug fix [https://github.com/openego/eDisGo/issues/135]

Release v0.0.5

Release date: July 19, 2018

Most important changes in this release are some major bug fixes, a differentiation of line load factors and
allowed voltage deviations for load and feed-in case in the grid reinforcement and a possibility to update
time series in the pypsa representation.

Changes

	Switch disconnecters in MV rings will now be installed, even if no LV station
exists in the ring #136 [https://github.com/openego/eDisGo/issues/136]

	Update to new version of ding0
v0.1.7 [https://github.com/openego/ding0/releases/tag/v0.1.7]

	Consider feed-in and load case in grid expansion methodology

	Enable grid expansion on snapshots

	Bug fixes

Release v0.0.3

Release date: July 6 2018

New features have been included in this release. Major changes being the use of the weather_cell_id and
the inclusion of new methods for distributing the curtailment to be more suitable to network operations.

Changes

	As part of the solution to github issues #86 [https://github.com/openego/eDisGo/issues/86],
#98 [https://github.com/openego/eDisGo/issues/98], Weather cell information was of importance due to the changes
in the source of data. The table ego_renewable_feedin_v031 is now used to provide this feedin time series indexed
using the weather cell id’s. Changes were made to ego.io and ding0 to correspondingly allow the use of this table
by eDisGo.

	A new curtailment method have been included based on the voltages at the nodes with GeneratorFluctuating objects.
The method is called curtail_voltage and its objective is to increase curtailment at locations where voltages
are very high, thereby alleviating over-voltage issues and also reducing the need for network reinforcement.

	Add parallelization for custon functions
#130 [https://github.com/openego/eDisGo/issues/130]

	Update ding0 version to v0.1.6 [https://github.com/openego/ding0/releases/tag/v0.1.6] and include
data processing v.4.2 data [https://github.com/openego/data_processing/releases/tag/v0.4.2]

	Bug Fixes

Release v0.0.2

Release date: March 15 2018

The code was heavily revised. Now, eDisGo provides the top-level API class
EDisGo for user interaction. See below for details and
other small changes.

Changes

	Switch disconnector/ disconnecting points are now relocated by eDisGo
#99 [https://github.com/openego/eDisGo/issues/99]. Before,
locations determined by Ding0 were used. Relocation is conducted according to
minimal load differences in both parts of the ring.

	Switch disconnectors are always located in LV stations
#23 [https://github.com/openego/eDisGo/issues/23]

	Made all round speed improvements as mentioned in the issues #43 [https://github.com/openego/eDisGo/issues/43]

	The structure of eDisGo and its input data has been extensively revised in order to
make it more consistent and easier to use. We introduced a top-level API class called EDisGo through which all user
input and measures are now handled. The EDisGo class thereby replaces the former Scenario class and parts of the Network class.
See A minimum working example for a quick overview of how to use the EDisGo class or Usage details for a more comprehensive
introduction to the edisgo structure and usage.

	We introduce a CLI script to use basic functionality of eDisGo including
parallelization. CLI uses higher level functions to run eDisGo. Consult
edisgo_run for further details.
#93 [https://github.com/openego/eDisGo/issues/93].

Index

Index

 _images/cosphi-sign-convention_load.png

_images/edisgo_logo.png
eDisGo

_images/cosphi-sign-convention_generation.png
= =

pacitive

_images/math/0118b6c3ffb87955a6ebd7e698cabcbd480d9918.png
Vihreshold.gt = Vagotation t T D Voiowea T D Vof fset.t

_images/math/03d93f7c8d5e4070692b82f3764d0a1d222ffea2.png

_images/grid_expansion_measures.png
Transformer overloading
or voltage issue at busbar _ . .
& lee overloading

}_@ IIII IIII

Voltage issue

Parallel transformer or
replacement Parallel line or replacement

™ L

I 1
Parallel line over 2/3 of the feeder

_images/math/008859dc02873c800906eac525cd415b1221dbd1.png
Ce
gt

_images/math/17b321c1ba3b170f0714423b84574f81dab6b929.png
e
Lg.t

_images/math/1b44fe2672a38a47ab07ebee863e2b0b8d4049ba.png
Gutation t

_images/math/307b3725cbb03398131f9ca542d79aff4933195f.png

nav.xhtml

 Table of Contents

 		
 Welcome to the documentation of eDisGo!

 		
 Getting started

 		
 Installation

 		
 Installation under Windows

 		
 Requirements for edisgoOPF package

 		
 Additional linear solver

 		
 Prerequisites

 		
 A minimum working example

 		
 Parallelization

 		
 LICENSE

 		
 Usage details

 		
 The fundamental data structure

 		
 Identify grid issues

 		
 Grid expansion

 		
 Battery storage systems

 		
 Curtailment

 		
 Plots

 		
 Results

 		
 Features in detail

 		
 Power flow analysis

 		
 Multi period optimal power flow

 		
 Grid expansion

 		
 General methodology

 		
 Identification of overloading and voltage issues

 		
 Grid expansion measures

 		
 Grid expansion costs

 		
 Curtailment

 		
 ‘feedin-proportional’

 		
 ‘voltage-based’

 		
 Storage integration

 		
 References

 		
 Notes to developers

 		
 Installation

 		
 Code style

 		
 Documentation

 		
 Definition and units

 		
 Sign Convention

 		
 Generator Sign Convention

 		
 Load Sign Convention

 		
 Reactive Power Sign Convention

 		
 Units

 		
 Default configuration data

 		
 config_db_tables

 		
 config_grid_expansion

 		
 config_timeseries

 		
 config_grid

 		
 Equipment data

 		
 API

 		
 EDisGo class

 		
 edisgo.network package

 		
 edisgo.network.components module

 		
 edisgo.network.grids module

 		
 edisgo.network.results module

 		
 edisgo.network.timeseries module

 		
 edisgo.network.topology module

 		
 edisgo.flex_opt package

 		
 edisgo.flex_opt.check_tech_constraints module

 		
 edisgo.flex_opt.costs module

 		
 edisgo.flex_opt.exceptions module

 		
 edisgo.flex_opt.reinforce_grid module

 		
 edisgo.flex_opt.reinforce_measures module

 		
 edisgo.io package

 		
 edisgo.io.ding0_import module

 		
 edisgo.io.generators_import module

 		
 edisgo.io.pypsa_io module

 		
 edisgo.io.timeseries_import module

 		
 edisgo.opf package

 		
 edisgo.opf.run_mp_opf module

 		
 edisgo.opf.timeseries_reduction module

 		
 edisgo.opf.results package

 		
 edisgo.opf.util package

 		
 edisgo.tools package

 		
 edisgo.tools.config module

 		
 edisgo.tools.edisgo_run module

 		
 edisgo.tools.geo module

 		
 edisgo.tools.plots module

 		
 edisgo.tools.powermodels_io module

 		
 edisgo.tools.preprocess_pypsa_opf_structure module

 		
 edisgo.tools.tools module

 		
 Module contents

 		
 What’s New

 		
 Release v0.1.0

 		
 Changes

 		
 Release v0.0.10

 		
 Changes

 		
 Bug fixes

 		
 Release v0.0.9

 		
 Changes

 		
 Release v0.0.8

 		
 Changes

 		
 Release v0.0.7

 		
 Changes

 		
 Release v0.0.6

 		
 Changes

 		
 Release v0.0.5

 		
 Changes

 		
 Release v0.0.3

 		
 Changes

 		
 Release v0.0.2

 		
 Changes

 		
 Index

_images/math/67e233591f3734337de9b86c9535cf5e3cf76265.png
> load

_images/math/790360f66e3da2ac2ad902e39c455131b5e64853.png
Y generation

_images/math/30fd5ce57e001bf334084755f2edba4a0afbc5d8.png
AVof fset.t

_images/math/5ec053cf70dc1c98cc297322250569eda193e7a4.png

_images/math/93efa8f3eb9ed4f8f72252b958bfb256982851a8.png
 Gattowed

_images/math/9ac0996defc8ac8c2d390568208cc992bc0e0929.png
Vihreshald, gt

_images/math/850f7377cec37daa92b1f65e5ee7b3d1961b72e9.png
s.t. Z Cot = Ctarget,t Vg € (solar, wind)

et < agi¥g € (solar, wind), t

_images/math/8dd2a710a4188ad1612190204efe79271f69725a.png
of fset

_images/math/be7cb9c09d218c82bd4141a24052a8cf217aa013.png
min (Z of fset,

_images/math/bf665b98fce5589a390705c29d008bd909738787.png
g, X Ctargett 'Vt € timesteps

=
Z g

gegens

_images/math/caf804f119ef6a068ee3712562cdee1e4fbf9afa.png
Ctarget.t

_static/ajax-loader.gif

_images/math/e11f2701c4a39c7fe543a6c4150b421d50f1c159.png

_images/math/f87a8f7fadc3a62580341d74c51cee2ae6a3b7a7.png
t
+offsef
2 — - (Vgt = Vireshold gt)

I — - (Vg
-

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

