
eDisGo Documentation
Release 0.2.0

open𝑒𝐺𝑜− 𝑇𝑒𝑎𝑚

Nov 10, 2022

CONTENTS

1 Contents 3
1.1 Getting started . 3
1.2 Usage details . 8
1.3 Features in detail . 19
1.4 Notes to developers . 25
1.5 Definition and units . 27
1.6 Default configuration data . 29
1.7 Equipment data . 37
1.8 API . 38
1.9 What’s New . 147
1.10 Index . 153

Bibliography 155

Python Module Index 157

Index 159

i

ii

eDisGo Documentation, Release 0.2.0

The python package eDisGo serves as a toolbox to evaluate flexibility mea-
sures as an economic alternative to conventional grid expansion in medium
and low voltage grids.

The toolbox currently includes:

• Data import from external data sources

– ding0 tool for synthetic medium and low voltage grid topologies
for the whole of Germany

– OpenEnergy DataBase (oedb) for feed-in time series of fluctu-
ating renewables and scenarios for future power plant park of
Germany

– demandlib for electrical load time series

– SimBEV and TracBEV for charging demand data of electric ve-
hicles, respectively potential charging point locations

• Static, non-linear power flow analysis using PyPSA for grid issue iden-
tification

• Automatic grid reinforcement methodology solving overloading and
voltage issues to determine grid expansion needs and costs based on
measures most commonly taken by German distribution grid operators

• Implementation of different charging strategies of electric vehicles

• Multiperiod optimal power flow based on julia package PowerMod-
els.jl optimizing storage positioning and/or operation (Currently not
maintained) as well as generator dispatch with regard to minimizing
grid expansion costs

• Temporal complexity reduction

• Heuristic for grid-supportive generator curtailment (Currently not
maintained)

• Heuristic grid-supportive battery storage integration (Currently not
maintained)

Currently, a method to optimize the flexibility that can be provided by electric vehicles through controlled charging is
being implemented. Prospectively, demand side management and reactive power management will be included.

See Getting started for the first steps. A deeper guide is provided in Usage details. Methodologies are explained in
detail in Features in detail. For those of you who want to contribute see Notes to developers and the API reference.

eDisGo was initially developed in the open_eGo research project as part of a grid planning tool that can be used to
determine the optimal grid and storage expansion of the German power grid over all voltage levels and has been used
in two publications of the project:

• Integrated Techno-Economic Power System Planning of Transmission and Distribution Grids

• Final report of the open_eGo project (in German)

CONTENTS 1

https://github.com/openego/ding0
https://openenergy-platform.org/dataedit/
https://github.com/oemof/demandlib
https://github.com/rl-institut/simbev
https://github.com/rl-institut/tracbev
https://pypsa.org
https://openegoproject.wordpress.com
https://www.mdpi.com/1996-1073/12/11/2091
https://www.uni-flensburg.de/fileadmin/content/abteilungen/industrial/dokumente/downloads/veroeffentlichungen/forschungsergebnisse/20190426endbericht-openego-fkz0325881-final.pdf

eDisGo Documentation, Release 0.2.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Getting started

1.1.1 Installation using Linux

Warning: Make sure to use python 3.8 or higher!

Install latest eDisGo version through pip. Therefore, we highly recommend using a virtual environment and its pip.

python -m pip install edisgo

You may also consider installing a developer version as detailed in Notes to developers.

1.1.2 Installation using Windows

Warning: Make sure to use python 3.8 or higher!

For Windows users we recommend using Anaconda and to install the geo stack using the conda-forge channel prior
to installing eDisGo. You may use the provided eDisGo_env.yml file to do so. Download the file and create a virtual
environment with:

conda env create -f path/to/eDisGo_env.yml

Activate the newly created environment with:

conda activate eDisGo_env

3

https://github.com/openego/eDisGo/blob/dev/eDisGo_env.yml

eDisGo Documentation, Release 0.2.0

1.1.3 Installation using MacOS

We don’t have any experience with our package on MacOS yet! If you try eDisGo on MacOS we would be happy if
you let us know about your experience!

1.1.4 Requirements for edisgoOPF package

Warning: The non-linear optimal power flow is currently not maintained and might not work out of the box!

To use the multiperiod optimal power flow that is provided in the julia package edisgoOPF in eDisGo you additionally
need to install julia version 1.1.1. Download julia from julia download page and add it to your path (see platform
specific instructions for more information).

Before using the edisgoOPF julia package for the first time you need to instantiate it. Therefore, in a terminal change
directory to the edisgoOPF package located in eDisGo/edisgo/opf/edisgoOPF and call julia from there. Change to
package mode by typing

]

Then activate the package:

(v1.0) pkg> activate .

And finally instantiate it:

(SomeProject) pkg> instantiate

Additional linear solver

As with the default linear solver in Ipopt (local solver used in the OPF) the limit for prolem sizes is reached quite
quickly, you may want to instead use the solver HSL_MA97. The steps required to set up HSL are also described in
the Ipopt Documentation. Here is a short version for reference:

First, you need to obtain an academic license for HSL Solvers. Under http://www.hsl.rl.ac.uk/ipopt/ download the
sources for Coin-HSL Full (Stable). You will need to provide an institutional e-mail to gain access.

Unpack the tar.gz:

tar -xvzf coinhsl-2014.01.10.tar.gz

To install the solver, clone the Ipopt Third Party HSL tools:

git clone https://github.com/coin-or-tools/ThirdParty-HSL.git
cd ThirdParty-HSL

Under ThirdParty-HSL, create a folder for the HSL sources named coinhsl and copy the contents of the HSL archive
into it. Under Ubuntu, you’ll need BLAS, LAPACK and GCC for Fortran. If you don’t have them, install them via:

sudo apt-get install libblas-dev liblapack-dev gfortran

You can then configure and install your HSL Solvers:

4 Chapter 1. Contents

https://julialang.org/downloads/oldreleases/
https://julialang.org/downloads/platform/
https://julialang.org/downloads/platform/
https://coin-or.github.io/Ipopt/INSTALL.html#DOWNLOAD_HSL
http://www.hsl.rl.ac.uk/ipopt/

eDisGo Documentation, Release 0.2.0

./configure
make
sudo make install

To make Ipopt pick up the solver, you need to add it to your path. During install, there will be an output that tells you
where the libraries have been put. Usually like this:

Libraries have been installed in:
/usr/local/lib

Add this path to the variable LD_LIBRARY_PATH:

export LD_LIBRARY="/usr/local/bin":$LD_LIBRARY_PATH

You might also want to add this to your .bashrc to make it persistent.

For some reason, Ipopt looks for a library named libhsl.so, which is not what the file is named, so we’ll also need to
provide a symlink:

cd /usr/local/lib
ln -s libcoinhsl.so libhsl.so

MA97 should now work and can be called from Julia with:

JuMP.setsolver(pm.model,IpoptSolver(linear_solver="ma97"))

1.1.5 Prerequisites

Beyond a running and up-to-date installation of eDisGo you need grid topology data. Currently synthetic grid data
generated with the python project Ding0 is the only supported data source. You can retrieve data from Zenodo (make
sure you choose latest data) or check out the Ding0 documentation on how to generate grids yourself.

1.1.6 A minimum working example

Following you find short examples on how to use eDisGo to set up a network and time series information for loads and
generators in the network and afterwards conduct a power flow analysis and determine possible grid expansion needs
and costs. Further details are provided in Usage details. Further examples can be found in the examples directory.

All following examples assume you have a ding0 grid topology (directory containing csv files, defining the grid topol-
ogy) in a directory “ding0_example_grid” in the directory from where you run your example. If you do not have an
example grid, you can download one here.

Aside from grid topology data you may eventually need a dataset on future installation of power plants. You may
therefore use the scenarios developed in the open_eGo project that are available in the OpenEnergy DataBase (oedb)
hosted on the OpenEnergy Platform (OEP). eDisGo provides an interface to the oedb using the package ego.io. ego.io
gives you a python SQL-Alchemy representations of the oedb and access to it by using the oedialect, an SQL-Alchemy
dialect used by the OEP.

You can run a worst-case scenario as follows:

from edisgo import EDisGo

Set up the EDisGo object - the EDisGo object provides the top-level API for
(continues on next page)

1.1. Getting started 5

https://github.com/openego/ding0
https://zenodo.org/record/890479
https://dingo.readthedocs.io/en/dev/usage_details.html#ding0-examples
https://github.com/openego/eDisGo/tree/dev/examples
https://raw.githubusercontent.com/openego/eDisGo/dev/tests/ding0_test_network_2/
https://openegoproject.wordpress.com
https://openenergy-platform.org/dataedit/
https://oep.iks.cs.ovgu.de/
https://github.com/openego/ego.io
https://github.com/openego/oedialect

eDisGo Documentation, Release 0.2.0

(continued from previous page)

invocation of data import, power flow analysis, network reinforcement,
flexibility measures, etc..
edisgo_obj = EDisGo(ding0_grid="ding0_example_grid")

Import scenario for future generator park from the oedb
edisgo_obj.import_generators(generator_scenario="nep2035")

Set up feed-in and load time series (here for a worst case analysis)
edisgo_obj.set_time_series_worst_case_analysis()

Conduct power flow analysis (non-linear power flow using PyPSA)
edisgo_obj.analyze()

Do grid reinforcement
edisgo_obj.reinforce()

Determine costs for each line/transformer that was reinforced
costs = edisgo_obj.results.grid_expansion_costs

Instead of conducting a worst-case analysis you can also provide specific time series:

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object with generator park scenario NEP2035
edisgo_obj = EDisGo(

ding0_grid="ding0_example_grid",
generator_scenario="nep2035"

)

Set up your own time series by load sector and generator type (these are dummy
time series!)
timeindex = pd.date_range("1/1/2011", periods=4, freq="H")
load time series (scaled by annual demand)
timeseries_load = pd.DataFrame(

{"residential": [0.0001] * len(timeindex),
"retail": [0.0002] * len(timeindex),
"industrial": [0.00015] * len(timeindex),
"agricultural": [0.00005] * len(timeindex)
},

index=timeindex)
feed-in time series of fluctuating generators (scaled by nominal power)
timeseries_generation_fluctuating = pd.DataFrame(

{"solar": [0.2] * len(timeindex),
"wind": [0.3] * len(timeindex)
},

index=timeindex)
feed-in time series of dispatchable generators (scaled by nominal power)
timeseries_generation_dispatchable = pd.DataFrame(

{"biomass": [1] * len(timeindex),
"coal": [1] * len(timeindex),
"other": [1] * len(timeindex)

(continues on next page)

6 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

(continued from previous page)

},
index=timeindex)

Before you can set the time series to the edisgo_obj you need to set the time
index (this could also be done upon initialisation of the edisgo_obj) - the time
index specifies which time steps to consider in power flow analysis
edisgo_obj.set_timeindex(timeindex)

Now you can set the active power time series of loads and generators in the grid
edisgo_obj.set_time_series_active_power_predefined(

conventional_loads_ts=timeseries_load,
fluctuating_generators_ts=timeseries_generation_fluctuating,
dispatchable_generators_ts=timeseries_generation_dispatchable

)

Before you can now run a power flow analysis and determine grid expansion needs,
reactive power time series of the loads and generators also need to be set. If you
simply want to use default configurations, you can do the following.
edisgo_obj.set_time_series_reactive_power_control()

Now you are ready to determine grid expansion needs
edisgo_obj.reinforce()

Determine cost for each line/transformer that was reinforced
costs = edisgo_obj.results.grid_expansion_costs

Time series for loads and fluctuating generators can also be automatically generated using the provided API for the
oemof demandlib and the OpenEnergy DataBase:

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object with generator park scenario NEP2035 and time index
timeindex = pd.date_range("1/1/2011", periods=4, freq="H")
edisgo_obj = EDisGo(

ding0_grid="ding0_example_grid",
generator_scenario="nep2035",
timeindex=timeindex

)

Set up your own time series by load sector and generator type (these are dummy
time series!)
Set up active power time series of loads and generators in the grid using prede-
fined profiles per load sector and technology type
(There are currently no predefined profiles for dispatchable generators, wherefore
their feed-in profiles need to be provided)
timeseries_generation_dispatchable = pd.DataFrame(

{"biomass": [1] * len(timeindex),
"coal": [1] * len(timeindex),
"other": [1] * len(timeindex)
},

index=timeindex
(continues on next page)

1.1. Getting started 7

eDisGo Documentation, Release 0.2.0

(continued from previous page)

)
edisgo_obj.set_time_series_active_power_predefined(

conventional_loads_ts="demandlib",
fluctuating_generators_ts="oedb",
dispatchable_generators_ts=timeseries_generation_dispatchable

)

Before you can now run a power flow analysis and determine grid expansion needs,
reactive power time series of the loads and generators also need to be set. Here,
default configurations are again used.
edisgo_obj.set_time_series_reactive_power_control()

Do grid reinforcement
edisgo_obj.reinforce()

Determine cost for each line/transformer that was reinforced
costs = edisgo_obj.results.grid_expansion_costs

1.1.7 LICENSE

Copyright (C) 2018 Reiner Lemoine Institut gGmbH

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https:
//www.gnu.org/licenses/.

1.2 Usage details

As eDisGo is designed to serve as a toolbox, it provides several methods to analyze distribution grids for grid issues
and to evaluate measures responding these. Below, we give a detailed introduction to the data structure and to how
different features can be used.

1.2.1 The fundamental data structure

It’s worth understanding how the fundamental data structure of eDisGo is designed in order to make use of its entire
features.

The class EDisGo serves as the top-level API for setting up your scenario, invocation of data import, analysis of hosting
capacity, grid reinforcement and flexibility measures. It also provides access to all relevant data. Grid data is stored in
the Topology class. Time series data can be found in the TimeSeries class. The class Electromobility holds data
on charging processes (how long cars are parking at a charging station, how much they need to charge, etc.) necessary
to apply different charging strategies, as well as information on potential charging sites and integrated charging parks.
The class HeatPump holds data on heat pump COP, heat demand to be served by the heat pumps and thermal storage
units, which is necessary to determine flexibility potential of heat pumps. Results data holding results e.g. from the

8 Chapter 1. Contents

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

eDisGo Documentation, Release 0.2.0

power flow analysis and grid expansion is stored in the Results class. Configuration data from the config files (see
Default configuration data) is stored in the Config class. All these can be accessed through the EDisGo object. In the
following code examples edisgo constitues an EDisGo object.

Access Topology grid data container object
edisgo.topology

Access TimeSeries data container object
edisgo.timeseries

Access Electromobility data container object
edisgo.electromobility

Access HeatPump data container object
edisgo.heat_pump

Access Results data container object
edisgo.results

Access configuration data container object
edisgo.config

Grid data is stored in pandas.DataFrames in the Topology object. There are extra data frames for all grid elements
(buses, lines, switches, transformers), as well as generators, loads and storage units. You can access those dataframes
as follows:

Access all buses in MV grid and underlying LV grids
edisgo.topology.buses_df

Access all lines in MV grid and underlying LV grids
edisgo.topology.lines_df

Access all MV/LV transformers
edisgo.topology.transformers_df

Access all HV/MV transformers
edisgo.topology.transformers_hvmv_df

Access all switches in MV grid and underlying LV grids
edisgo.topology.switches_df

Access all generators in MV grid and underlying LV grids
edisgo.topology.generators_df

Access all loads in MV grid and underlying LV grids
edisgo.topology.loads_df

Access all storage units in MV grid and underlying LV grids
edisgo.topology.storage_units_df

The grids can also be accessed individually. The MV grid is stored in an MVGrid object and each LV grid in an LVGrid
object. The MV grid topology can be accessed through

1.2. Usage details 9

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Access MV grid
edisgo.topology.mv_grid

Its components can be accessed analog to those of the whole grid topology as shown above.

Access all buses in MV grid
edisgo.topology.mv_grid.buses_df

Access all generators in MV grid
edisgo.topology.mv_grid.generators_df

A list of all LV grids can be retrieved through:

Get list of all underlying LV grids
(Note that MVGrid.lv_grids returns a generator object that must first be
converted to a list in order to view the LVGrid objects)
list(edisgo.topology.mv_grid.lv_grids)
the following yields the same
list(edisgo.topology.lv_grids)

Access to a single LV grid’s components can be obtained analog to shown above for the whole topology and the MV
grid:

Get single LV grid by providing its ID (e.g. 1) or name (e.g. "LVGrid_1")
lv_grid = edisgo.topology.get_lv_grid("LVGrid_402945")

Access all buses in that LV grid
lv_grid.buses_df

Access all loads in that LV grid
lv_grid.loads_df

A single grid’s generators, loads, storage units and switches can also be retrieved as Generator, Load , Storage, and
Switch objects, respecitvely:

Get all switch disconnectors in MV grid as Switch objects
(Note that objects are returned as a python generator object that must
first be converted to a list in order to view the Switch objects)
list(edisgo.topology.mv_grid.switch_disconnectors)

Get all generators in LV grid as Generator objects
list(lv_grid.generators)

For some applications it is helpful to get a graph representation of the grid, e.g. to find the path from the station to a
generator. The graph representation of the whole topology or each single grid can be retrieved as follows:

Get graph representation of whole topology
edisgo.to_graph()

Get graph representation for MV grid
edisgo.topology.mv_grid.graph

Get graph representation for LV grid
lv_grid.graph

10 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

The returned graph is a networkx.Graph, where lines are represented by edges in the graph, and buses and transformers
are represented by nodes.

1.2.2 Component time series

There are various options how to set active and reactive power time series. First, options for setting active power time
series are explained, followed by options for setting reactive power time series. You can also check out the A minimum
working example section to get a quick start.

Active power time series

There are various options how to set active time series:

• “manual”: providing your own time series

• “worst-case”: using simultaneity factors from config files

• “predefined”: using predefined profiles, e.g. standard load profiles

• “optimised”: using the LOPF to optimise e.g. vehicle charging

• “heuristic”: using heuristics

Manual

Use this mode to provide your own time series for specific components. It can be invoked as follows:

edisgo.set_time_series_manual()

See set_time_series_manual for more information.

When using this mode make sure to previously set the time index. This can either be done upon initialisation of the
EDisGo object by providing the input parameter ‘timeindex’ or by using the function set_timeindex.

Worst-case

Use this mode to set feed-in and load in heavy load flow case (here called “load_case”) and/or reverse power flow case
(here called “feed-in_case”) using simultaneity factors used in conventional grid planning. It can be invoked as follows:

edisgo.set_time_series_worst_case_analysis()

See set_time_series_worst_case_analysis for more information.

When using this mode a fictitious time index starting 1/1/1970 00:00 is automatically set. This is done because pypsa
needs time indeces. To find out which time index corresponds to which case check out:

edisgo.timeseries.timeindex_worst_cases

1.2. Usage details 11

https://networkx.github.io/documentation/stable/reference/classes/graph.html#network.Graph

eDisGo Documentation, Release 0.2.0

Predefined

Use this mode if you want to set time series by component type. You may either provide your own time series or use
ones provided through the OpenEnergy DataBase or other python tools. This mode can be invoked as follows:

edisgo.set_time_series_active_power_predefined()

For the following components you can use existing time series:

• Fluctuating generators: Feed-in time series for solar and wind power plants can be retrieved from the OpenEnergy
DataBase.

• Conventional loads: Standard load profiles for the different sectors residential, commercial, agricultural and
industrial are generated using the oemof demandlib.

For all other components you need to provide your own time series. Time series for heat pumps cannot be set using
this mode. See set_time_series_active_power_predefined for more information.

When using this mode make sure to previously set the time index. This can either be done upon initialisation of the
EDisGo object by providing the input parameter ‘timeindex’ or by using the function set_timeindex.

Optimised

Use this mode to optimise flexibilities, e.g. charging of electric vehicles or dispatch of heat pumps with thermal storage
units.

Todo: Add more details once the optimisation is merged.

Heuristic

Use this mode to use heuristics to set time series. So far, only heuristics for electric vehicle charging are implemented.
The charging strategies can be invoked as follows:

edisgo.apply_charging_strategy()

See function docstring of apply_charging_strategy or documentation section Charging strategies for more infor-
mation.

Further, there is currently one operating strategy for heat pumps implemented where the heat demand is directly served
by the heat pump without buffering heat using a thermal storage. The operating strategy can be invoked as follows:

edisgo.apply_heat_pump_operating_strategy()

See function docstring of apply_heat_pump_operating_strategy for more information.

12 Chapter 1. Contents

https://openenergy-platform.org/dataedit/schemas
https://openenergy-platform.org/dataedit/schemas
https://github.com/oemof/demandlib/

eDisGo Documentation, Release 0.2.0

Reactive power time series

There are so far two options how to set reactive power time series:

• “manual”: providing your own time series

• “fixed 𝑐𝑜𝑠𝜙”: using a fixed power factor

It is perspectively planned to also provide reactive power controls Q(U) and 𝑐𝑜𝑠𝜙(𝑃).

Manual

See active power Manual mode documentation.

Fixed 𝑐𝑜𝑠𝜙

Use this mode to set reactive power time series using fixed power factors. It can be invoked as follows:

edisgo.set_time_series_reactive_power_control()

See set_time_series_reactive_power_control for more information.

When using this mode make sure to previously set active power time series.

1.2.3 Identifying grid issues

As detailed in A minimum working example, once you set up your scenario by instantiating an EDisGo object, you are
ready for a grid analysis and identifying grid issues (line overloading and voltage issues) using analyze():

Do non-linear power flow analysis for MV and LV grid
edisgo.analyze()

The analyze function conducts a non-linear power flow using PyPSA.

The range of time analyzed by the power flow analysis is by default defined by the timeindex(), that can be given as
an input to the EDisGo object through the parameter timeindex or is otherwise set automatically. If you want to change
the time steps that are analyzed, you can specify those through the parameter timesteps of the analyze function. Make
sure that the specified time steps are a subset of timeindex().

1.2.4 Grid expansion

Grid expansion can be invoked by reinforce():

Reinforce grid due to overloading and overvoltage issues
edisgo.reinforce()

You can further specify e.g. if to conduct a combined analysis for MV and LV (regarding allowed voltage deviations)
or if to only calculate grid expansion needs without changing the topology of the graph. See reinforce_grid() for
more information.

Costs for the grid expansion measures can be obtained as follows:

Get costs of grid expansion
costs = edisgo.results.grid_expansion_costs

1.2. Usage details 13

eDisGo Documentation, Release 0.2.0

Further information on the grid reinforcement methodology can be found in section Grid expansion.

1.2.5 Electromobility

Electromobility data including charging processes as well as information on potential charging sites and integrated
charging parks are stored in the Electromobility object.

You can access these data as follows:

Access DataFrame with all SimBEV charging processes
edisgo.electromobility.charging_processes_df

Access GeoDataFrame with all TracBEV potential charging parks
edisgo.electromobility.potential_charging_parks_gdf

Access DataFrame with all charging parks that got integrated
edisgo.electromobility.integrated_charging_parks_df

The integrated charging points are also stored in the Topology object and can be accessed as follows:

Access DataFrame with all integrated charging points.
edisgo.topology.charging_points_df

So far, adding electromobility data to an eDisGo object requires electromobility data from SimBEV (required version:
3083c5a) and TracBEV (required version: 14d864c) to be stored in the directories specified through the parameters
simbev_directory and tracbev_directory. SimBEV provides data on standing times, charging demand, etc. per vehicle,
whereas TracBEV provides potential charging point locations.

Todo: Add information on how to retrieve SimBEV and TracBEV data

Here is a small example on how to import electromobility data and apply a charging strategy. A more extensive example
can be found in the example jupyter notebook electromobility_example.

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object
timeindex = pd.date_range("1/1/2011", periods=24*7, freq="H")
edisgo = EDisGo(

ding0_grid=dingo_grid_path,
timeindex=timeindex

)
edisgo.set_time_series_active_power_predefined(

fluctuating_generators_ts="oedb",
dispatchable_generators_ts=pd.DataFrame(

data=1, columns=["other"], index=timeindex),
conventional_loads_ts="demandlib",

)

edisgo.set_time_series_reactive_power_control()

Resample edisgo timeseries to 15-minute resolution to match with SimBEV and
(continues on next page)

14 Chapter 1. Contents

https://github.com/rl-institut/simbev
https://github.com/rl-institut/simbev/commit/86076c936940365587c9fba98a5b774e13083c5a
https://github.com/rl-institut/tracbev
https://github.com/rl-institut/tracbev/commit/03e335655770a377166c05293a966052314d864c
https://github.com/openego/eDisGo/blob/dev/examples/electromobility_example.ipynb

eDisGo Documentation, Release 0.2.0

(continued from previous page)

TracBEV data
edisgo.resample_timeseries()

Import electromobility data
edisgo.import_electromobility(

simbev_directory=simbev_path,
tracbev_directory=tracbev_path,

)

Apply charging strategy
edisgo.apply_charging_strategy(strategy="dumb")

Further information on the electromobility integration methodology and the charging strategies can be found in section
Electromobility integration.

1.2.6 Heat pumps

Heat pump data including the heat pump’s time variant COP, heat demand to be served as well as thermal storage
capacities are stored in the HeatPump object.

You can access these data as follows:

Access DataFrame with COP time series
edisgo.heat_pump.cop_df

Access DataFrame with heat demand time series
edisgo.heat_pump.heat_demand_df

Access DataFrame with information on thermal storage capacities
edisgo.heat_pump.thermal_storage_units_df

The heat pumps themselves are also stored in the Topology object and can be accessed as follows:

Access DataFrame with all integrated heat pumps
edisgo.topology.loads_df[edisgo.topology.loads_df.type == "heat_pump"]

Here is a small example on how to integrate a heat pump and apply an operating strategy.

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object
timeindex = pd.date_range("1/1/2011", periods=4, freq="H")
edisgo = EDisGo(

ding0_grid=dingo_grid_path,
timeindex=timeindex

)

Set up dummy heat pump data
bus = edisgo.topology.loads_df[

edisgo.topology.loads_df.sector == "residential"].bus[0]
heat_pump_params = {"bus": bus, "p_set": 0.015, "type": "heat_pump"}

(continues on next page)

1.2. Usage details 15

eDisGo Documentation, Release 0.2.0

(continued from previous page)

cop = pd.Series([1.0, 2.0, 1.5, 3.4], index=timeindex)
heat_demand = pd.Series([0.01, 0.03, 0.015, 0.0], index=timeindex)

Add heat pump to grid topology
hp_name = edisgo.add_component("load", **heat_pump_params)

Add heat pump COP and heat demand to be served
edisgo.heat_pump.set_cop(edisgo, cop.to_frame(name=hp_name))
edisgo.heat_pump.set_heat_demand(edisgo, heat_demand.to_frame(name=hp_name))

Apply operating strategy - this sets the heat pump's dispatch time series
in timeseries.loads_active_power
edisgo.apply_heat_pump_operating_strategy()

hp_dispatch = edisgo.timeseries.loads_active_power.loc[:, hp_name]
hp_dispatch.plot()

1.2.7 Battery storage systems

Battery storage systems can be integrated into the grid as an alternative to classical grid expansion. Here are two small
examples on how to integrate a storage unit manually. In the first one, the EDisGo object is set up for a worst-case
analysis, wherefore no time series needs to be provided for the storage unit, as worst-case definition is used. In the
second example, a time series analysis is conducted, wherefore a time series for the storage unit needs to be provided.

from edisgo import EDisGo

Set up EDisGo object
edisgo = EDisGo(ding0_grid=dingo_grid_path)

Get random bus to connect storage to
random_bus = edisgo.topology.buses_df.index[3]
Add storage instance
edisgo.add_component(

comp_type="storage_unit",
add_ts=False,
bus=random_bus,
p_nom=4

)

Set up worst case time series for loads, generators and storage unit
edisgo.set_time_series_worst_case_analysis()

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object
timeindex = pd.date_range("1/1/2011", periods=4, freq="H")
edisgo = EDisGo(

ding0_grid=dingo_grid_path,
(continues on next page)

16 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

(continued from previous page)

generator_scenario="ego100",
timeindex=timeindex

)

Add time series for loads and generators
timeseries_generation_dispatchable = pd.DataFrame(

{"biomass": [1] * len(timeindex),
"coal": [1] * len(timeindex),
"other": [1] * len(timeindex)
},

index=timeindex
)
edisgo.set_time_series_active_power_predefined(

conventional_loads_ts="demandlib",
fluctuating_generators_ts="oedb",
dispatchable_generators_ts=timeseries_generation_dispatchable

)
edisgo.set_time_series_reactive_power_control()

Add storage unit to random bus with time series
edisgo.add_component(

comp_type="storage_unit",
bus=edisgo.topology.buses_df.index[3],
p_nom=4,
ts_active_power=pd.Series(

[-3.4, 2.5, -3.4, 2.5],
index=edisgo.timeseries.timeindex),

ts_reactive_power=pd.Series(
[0., 0., 0., 0.],
index=edisgo.timeseries.timeindex)

)

To optimise storage positioning and operation eDisGo provides the options to use a heuristic (described in section
Storage integration) or an optimal power flow approach. However, the storage integration heuristic is not yet adapted
to the refactored code and therefore not available, and the OPF is not maintained and may therefore not work out of
the box. Following you find an example on how to use the OPF to find the optimal storage positions in the grid with
regard to grid expansion costs. Storage operation is optimized at the same time. The example uses the same EDisGo
instance as above. A total storage capacity of 10 MW is distributed in the grid. storage_buses can be used to specify
certain buses storage units may be connected to. This does not need to be provided but will speed up the optimization.

random_bus = edisgo.topology.buses_df.index[3:13]
edisgo.perform_mp_opf(

timesteps=period,
scenario="storage",
storage_units=True,
storage_buses=busnames,
total_storage_capacity=10.0,
results_path=results_path)

1.2. Usage details 17

eDisGo Documentation, Release 0.2.0

1.2.8 Curtailment

The curtailment function is used to spatially distribute the power that is to be curtailed. To optimise which generators
should be curtailed eDisGo provides the options to use a heuristics (heuristics feedin-proportional and voltage-based,
in detail explained in section Curtailment) or an optimal power flow approach. However, the heuristics are not yet
adapted to the refactored code and therefore not available, and the OPF is not maintained and may therefore not work
out of the box.

In the following example the optimal power flow is used to find the optimal generator curtailment with regard to mini-
mizing grid expansion costs for given curtailment requirements. It uses the EDisGo object from above.

edisgo.perform_mp_opf(
timesteps=period,
scenario='curtailment',
results_path=results_path,
curtailment_requirement=True,
curtailment_requirement_series=[10, 20, 15, 0])

1.2.9 Plots

Todo: Add plotly plot option

EDisGo provides a bunch of predefined plots to e.g. plot the MV grid topology, line loading and node voltages in the
MV grid or as a histograms.

plot MV grid topology on a map
edisgo.plot_mv_grid_topology()

plot grid expansion costs for lines in the MV grid and stations on a map
edisgo.plot_mv_grid_expansion_costs()

plot voltage histogram
edisgo.histogram_voltage()

See EDisGo class for more plots and plotting options.

1.2.10 Results

Results such as voltages at nodes and line loading from the power flow analysis as well as grid expansion costs are
provided through the Results class and can be accessed the following way:

edisgo.results

Get voltages at nodes from v_res() and line loading from s_res() or i_res. equipment_changes holds details
about measures performed during grid expansion. Associated costs can be obtained through grid_expansion_costs.
Flexibility measures may not entirely resolve all issues. These unresolved issues are listed in unresolved_issues.

Results can be saved to csv files with:

edisgo.results.save('path/to/results/directory/')

See save() for more information.

18 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

1.3 Features in detail

1.3.1 Power flow analysis

In order to analyse voltages and line loadings a non-linear power flow analysis (PF) using pypsa is conducted. All loads
and generators are modelled as PQ nodes. The slack is positioned at the substation’s secondary side.

1.3.2 Multi period optimal power flow

Warning: The non-linear optimal power flow is currently not maintained and might not work out of the box!

Todo: Add

1.3.3 Grid expansion

General methodology

The grid expansion methodology is conducted in reinforce_grid().

The order grid expansion measures are conducted is as follows:

• Reinforce stations and lines due to overloading issues

• Reinforce lines in MV grid due to voltage issues

• Reinforce distribution substations due to voltage issues

• Reinforce lines in LV grid due to voltage issues

• Reinforce stations and lines due to overloading issues

Reinforcement of stations and lines due to overloading issues is performed twice, once in the beginning and again
after fixing voltage issues, as the changed power flows after reinforcing the grid may lead to new overloading issues.
How voltage and overloading issues are identified and solved is shown in figure Grid expansion measures and further
explained in the following sections.

reinforce_grid() offers a few additional options. It is e.g. possible to conduct grid reinforcement measures on
a copy of the graph so that the original grid topology is not changed. It is also possible to only identify necessary
reinforcement measures for two worst-case snapshots in order to save computing time and to set combined or separate
allowed voltage deviation limits for MV and LV. See documentation of reinforce_grid() for more information.

1.3. Features in detail 19

eDisGo Documentation, Release 0.2.0

Fig. 1.1: Grid expansion measures

Identification of overloading and voltage issues

Identification of overloading and voltage issues is conducted in check_tech_constraints.

Voltage issues are determined based on allowed voltage deviations set in the config file config_grid_expansion in section
grid_expansion_allowed_voltage_deviations. It is possible to set one allowed voltage deviation that is used for MV
and LV or define separate allowed voltage deviations. Which allowed voltage deviation is used is defined through
the parameter combined_analysis of reinforce_grid(). By default combined_analysis is set to false, resulting in
separate voltage limits for MV and LV, as a combined limit may currently lead to problems if voltage deviation in MV
grid is already close to the allowed limit, in which case the remaining allowed voltage deviation in the LV grids is close
to zero.

Overloading is determined based on allowed load factors that are also defined in the config file config_grid_expansion
in section grid_expansion_load_factors.

Allowed voltage deviations as well as load factors are in most cases different for load and feed-in case. Load and feed-in
case are commonly used worst-cases for grid expansion analyses. Load case defines a situation where all loads in the
grid have a high demand while feed-in by generators is low or zero. In this case power is flowing from the high-voltage
grid to the distribution grid. In the feed-in case there is a high generator feed-in and a small energy demand leading
to a reversed power flow. Load and generation assumptions for the two worst-cases are definded in the config file
config_timeseries in section worst_case_scale_factor (scale factors describe actual power to nominal power ratio of
generators and loads).

When conducting grid reinforcement based on given time series instead of worst-case assumptions, load and feed-in
case also need to be definded to determine allowed voltage deviations and load factors. Therefore, the two cases are
identified based on the generation and load time series of all loads and generators in the grid and defined as follows:

• Load case: positive (
∑︀

𝑙𝑜𝑎𝑑 -
∑︀

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

• Feed-in case: negative (
∑︀

𝑙𝑜𝑎𝑑 -
∑︀

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) -> reverse power flow at HV/MV substation

Grid losses are not taken into account. See timesteps_load_feedin_case() for more details and implementation.

20 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

Check line load

Exceedance of allowed line load of MV and LV lines is checked in mv_line_load() and
lv_line_load(), respectively. The functions use the given load factor and the maximum allowed current
given by the manufacturer (see I_max_th in tables LV cables, MV cables and MV overhead lines) to cal-
culate the allowed line load of each LV and MV line. If the line load calculated in the power flow analysis
exceeds the allowed line load, the line is reinforced (see Reinforce lines due to overloading issues).

Check station load

Exceedance of allowed station load of HV/MV and MV/LV stations is checked in
hv_mv_station_load() and mv_lv_station_load(), respectively. The functions use the given
load factor and the maximum allowed apparent power given by the manufacturer (see S_nom in tables
LV transformers, and MV transformers) to calculate the allowed apparent power of the stations. If the
apparent power calculated in the power flow analysis exceeds the allowed apparent power the station is
reinforced (see Reinforce stations due to overloading issues).

Check line and station voltage deviation

Compliance with allowed voltage deviation limits in MV and LV grids is checked in
mv_voltage_deviation() and lv_voltage_deviation(), respectively. The functions check if
the voltage deviation at a node calculated in the power flow analysis exceeds the allowed voltage deviation.
If it does, the line is reinforced (see Reinforce MV/LV stations due to voltage issues or Reinforce lines due
to voltage).

Grid expansion measures

Reinforcement measures are conducted in reinforce_measures. Whereas overloading issues can usually be solved in
one step, except for some cases where the lowered grid impedance through reinforcement measures leads to new issues,
voltage issues can only be solved iteratively. This means that after each reinforcement step a power flow analysis is
conducted and the voltage rechecked. An upper limit for how many iteration steps should be performed is set in order
to avoid endless iteration. By default it is set to 10 but can be changed using the parameter max_while_iterations of
reinforce_grid().

Reinforce lines due to overloading issues

Line reinforcement due to overloading is conducted in reinforce_lines_overloading(). In a first
step a parallel line of the same line type is installed. If this does not solve the overloading issue as many
parallel standard lines as needed are installed.

1.3. Features in detail 21

eDisGo Documentation, Release 0.2.0

Reinforce stations due to overloading issues

Reinforcement of HV/MV and MV/LV stations due to overloading is conducted in
reinforce_hv_mv_station_overloading() and reinforce_mv_lv_station_overloading(),
respectively. In a first step a parallel transformer of the same type as the existing transformer is installed.
If there is more than one transformer in the station the smallest transformer that will solve the overloading
issue is used. If this does not solve the overloading issue as many parallel standard transformers as needed
are installed.

Reinforce MV/LV stations due to voltage issues

Reinforcement of MV/LV stations due to voltage issues is conducted in
reinforce_mv_lv_station_voltage_issues(). To solve voltage issues, a parallel standard
transformer is installed.

After each station with voltage issues is reinforced, a power flow analysis is conducted and the voltage
rechecked. If there are still voltage issues the process of installing a parallel standard transformer and
conducting a power flow analysis is repeated until voltage issues are solved or until the maximum number
of allowed iterations is reached.

Reinforce lines due to voltage

Reinforcement of lines due to voltage issues is conducted in reinforce_lines_voltage_issues().
In the case of several voltage issues the path to the node with the highest voltage deviation is reinforced
first. Therefore, the line between the secondary side of the station and the node with the highest voltage
deviation is disconnected at a distribution substation after 2/3 of the path length. If there is no distribution
substation where the line can be disconnected, the node is directly connected to the busbar. If the node is
already directly connected to the busbar a parallel standard line is installed.

Only one voltage problem for each feeder is considered at a time since each measure effects the voltage of
each node in that feeder.

After each feeder with voltage problems has been considered, a power flow analysis is conducted and the
voltage rechecked. The process of solving voltage issues is repeated until voltage issues are solved or until
the maximum number of allowed iterations is reached.

Grid expansion costs

Total grid expansion costs are the sum of costs for each added transformer and line. Costs for lines and transformers
are only distinguished by the voltage level they are installed in and not by the different types. In the case of lines it
is further taken into account wether the line is installed in a rural or an urban area, whereas rural areas are areas with
a population density smaller or equal to 500 people per km2 and urban areas are defined as areas with a population
density higher than 500 people per km2 [DENA]. The population density is calculated by the population and area of
the grid district the line is in (See Grid).

Costs for lines of aggregated loads and generators are not considered in the costs calculation since grids of aggregated
areas are not modeled but aggregated loads and generators are directly connected to the MV busbar.

22 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

1.3.4 Curtailment

Warning: The curtailment methods are not yet adapted to the refactored code and therefore currently do not work.

eDisGo right now provides two curtailment methodologies called ‘feedin-proportional’ and ‘voltage-based’, that are
implemented in curtailment. Both methods are intended to take a given curtailment target obtained from an opti-
mization of the EHV and HV grids using eTraGo and allocate it to the generation units in the grids. Curtailment targets
can be specified for all wind and solar generators, by generator type (solar or wind) or by generator type in a given
weather cell. It is also possible to curtail specific generators internally, though a user friendly implementation is still
in the works.

‘feedin-proportional’

The ‘feedin-proportional’ curtailment is implemented in feedin_proportional(). The curtailment that
has to be met in each time step is allocated equally to all generators depending on their share of total feed-in
in that time step.

𝑐𝑔,𝑡 =
𝑎𝑔,𝑡∑︀

𝑔∈𝑔𝑒𝑛𝑠
𝑎𝑔,𝑡

× 𝑐𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 ∀𝑡 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

where 𝑐𝑔,𝑡 is the curtailed power of generator 𝑔 in timestep 𝑡, 𝑎𝑔,𝑡 is the weather-dependent availability of
generator 𝑔 in timestep 𝑡 and 𝑐𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 is the given curtailment target (power) for timestep 𝑡 to be allocated
to the generators.

‘voltage-based’

The ‘voltage-based’ curtailment is implemented in voltage_based(). The curtailment that has to be
met in each time step is allocated to all generators depending on the exceedance of the allowed voltage
deviation at the nodes of the generators. The higher the exceedance, the higher the curtailment.

The optional parameter voltage_threshold specifies the threshold for the exceedance of the allowed voltage
deviation above which a generator is curtailed. By default it is set to zero, meaning that all generators
at nodes with voltage deviations that exceed the allowed voltage deviation are curtailed. Generators at
nodes where the allowed voltage deviation is not exceeded are not curtailed. In the case that the required
curtailment exceeds the weather-dependent availability of all generators with voltage deviations above the
specified threshold, the voltage threshold is lowered in steps of 0.01 p.u. until the curtailment target can
be met.

Above the threshold, the curtailment is proportional to the exceedance of the allowed voltage deviation.

𝑐𝑔,𝑡
𝑎𝑔,𝑡

= 𝑛 · (𝑉𝑔,𝑡 − 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑔,𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡

where 𝑐𝑔,𝑡 is the curtailed power of generator 𝑔 in timestep 𝑡, 𝑎𝑔,𝑡 is the weather-dependent availability of
generator 𝑔 in timestep 𝑡, 𝑉𝑔,𝑡 is the voltage at generator 𝑔 in timestep 𝑡 and 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑔,𝑡 is the voltage
threshold for generator 𝑔 in timestep 𝑡. 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑔,𝑡 is calculated as follows:

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑔,𝑡 = 𝑉𝑔𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑡 + ∆𝑉𝑔𝑎𝑙𝑙𝑜𝑤𝑒𝑑
+ ∆𝑉𝑜𝑓𝑓𝑠𝑒𝑡,𝑡

where 𝑉𝑔𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑡 is the voltage at the station’s secondary side, ∆𝑉𝑔𝑎𝑙𝑙𝑜𝑤𝑒𝑑
is the allowed voltage deviation

in the reverse power flow and ∆𝑉𝑜𝑓𝑓𝑠𝑒𝑡,𝑡 is the exceedance of the allowed voltage deviation above which
generators are curtailed.

1.3. Features in detail 23

https://github.com/openego/eTraGo

eDisGo Documentation, Release 0.2.0

𝑛 and 𝑜𝑓𝑓𝑠𝑒𝑡 in the equation above are slope and y-intercept of a linear relation between the curtailment
and the exceedance of the allowed voltage deviation. They are calculated by solving the following linear
problem that penalizes the offset using the python package pyomo:

𝑚𝑖𝑛

(︃∑︁
𝑡

𝑜𝑓𝑓𝑠𝑒𝑡𝑡

)︃

𝑠.𝑡.
∑︁
𝑔

𝑐𝑔,𝑡 = 𝑐𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 ∀𝑔 ∈ (𝑠𝑜𝑙𝑎𝑟, 𝑤𝑖𝑛𝑑)

𝑐𝑔,𝑡 ≤ 𝑎𝑔,𝑡∀𝑔 ∈ (𝑠𝑜𝑙𝑎𝑟, 𝑤𝑖𝑛𝑑), 𝑡

where 𝑐𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 is the given curtailment target (power) for timestep 𝑡 to be allocated to the generators.

1.3.5 Electromobility integration

The import and integration of electromobility data is implemented in electromobility_import().

Allocation of charging demand

The allocation of charging processes to charging stations is implemented in distribute_charging_demand(). Af-
ter electromobility data is loaded, the charging demand from SimBEV is allocated to potential charging parks from
TracBEV. The allocation of the charging processes to the charging infrastructure is carried out with the help of the
weighting factor of the potential charging parks determined by TracBEV. This involves a random and weighted se-
lection of one charging park per charging process. In the case of private charging infrastructure, a separate charging
point is set up for each electric vehicle (EV). All charging processes of the respective EV and charging use case are
assigned to this charging point. The allocation of private charging processes to charging stations is implemented in
distribute_private_charging_demand().

For public charging infrastructure, the allocation is made explicitly per charging process. For each charging process
it is determined whether a suitable charging point is already available. For this purpose it is checked whether the
charging point is occupied by another EV in the corresponding period and whether it can provide the corresponding
charging capacity. If no suitable charging point is available, a charging point is determined randomly and weighted in
the same way as for private charging. The allocation of public charging processes to charging stations is implemented
in distribute_public_charging_demand().

Charging strategies

eDisGo right now provides three charging strategy methodologies called ‘dumb’, ‘reduced’ and ‘residual’, that are
implemented in charging_strategies. The aim of the charging strategies ‘reduced’ and ‘residual’ is to generate
the most grid-friendly charging behavior possible without restricting the convenience for end users. Therefore, the
boundary condition of all charging strategies is that the charging requirement of each charging process must be fully
covered. This means that charging processes can only be flexibilised if the EV can be fully charged while it is stationary.
Furthermore, only private charging processes can be used as a flexibility, since the fulfillment of the service is the
priority for public charging processes.

24 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

‘dumb’

In this charging strategy the cars are charged directly after arrival with the maximum possible charging capacity.

‘reduced’

This is a preventive charging strategy. The cars are charged directly after arrival with the minimum possible charg-
ing power. The minimum possible charging power is determined by the parking time and the parameter mini-
mum_charging_capacity_factor.

‘residual’

This is an active charging strategy. The cars are charged when the residual load in the MV grid is lowest (high generation
and low consumption). Charging processes with a low flexibility are given priority.

1.3.6 Storage integration

Warning: The storage integration methods described below are not yet adapted to the refactored code and therefore
currently do not work.

Besides the possibility to connect a storage with a given operation to any node in the grid, eDisGo provides a method-
ology that takes a given storage capacity and allocates it to multiple smaller storage units such that it reduces line over-
loading and voltage deviations. The methodology is implemented in one_storage_per_feeder(). As the above
described curtailment allocation methodologies it is intended to be used in combination with eTraGo where storage
capacity and operation is optimized.

For each feeder with load or voltage issues it is checked if integrating a storage will reduce peaks in the feeder, starting
with the feeder with the highest theoretical grid expansion costs. A heuristic approach is used to estimate storage sizing
and siting while storage operation is carried over from the given storage operation.

A more thorough documentation will follow soon.

1.3.7 References

1.4 Notes to developers

1.4.1 Installation

Clone the repository from GitHub and change into the eDisGo directory:

cd eDisGo

1.4. Notes to developers 25

https://github.com/openego/eTraGo
https://github.com/openego/edisgo

eDisGo Documentation, Release 0.2.0

Installation using Linux

To set up a source installation using linux simply use a virtual environment and install the source code with pip. Make
sure to use python3.7 or higher (recommended python3.8). After setting up your virtual environment and activating it
run the following commands within your eDisGo directory:

python -m pip install -e .[full] # install eDisGo from source
pre-commit install # install pre-commit hooks

Installation using Windows

For Windows users we recommend using Anaconda and to install the geo stack using the conda-forge channel prior to
installing eDisGo. You may use the provided eDisGo_env_dev.yml file to do so. Create the virtual environment with:

conda env create -f path/to/eDisGo_env_dev.yml # install eDisGo from source

Activate the newly created environment and install the pre-commit hooks with:

conda activate eDisGo_env_dev
pre-commit install # install pre-commit hooks

This will install eDisGo with all its dependencies.

Installation using MacOS

We don’t have any experience with our package on MacOS yet! If you try eDisGo on MacOS we would be happy if
you let us know about your experience!

1.4.2 Code standards

• pre-commit hooks: Make sure to use the provided pre-commit hooks

• pytest: Make sure that all pytest tests are passing and add tests for every new code base

• Documentation of `@property` functions: Put documentation of getter and setter both in Docstring of getter,
see on Stackoverflow

• Order of public/private/protected methods, property decorators, etc. in a class: TBD

1.4.3 Documentation

Build the docs locally by first setting up the sphinx environment with (executed from top-level folder)

sphinx-apidoc -f -o doc/api edisgo

And then you build the html docs on your computer with

sphinx-build -E -a doc/ doc/_html

26 Chapter 1. Contents

https://github.com/openego/eDisGo/blob/dev/eDisGo_env_dev.yml
https://stackoverflow.com/a/16025754/6385207

eDisGo Documentation, Release 0.2.0

1.5 Definition and units

1.5.1 Sign Convention

Generators and Loads in an AC power system can behave either like an inductor or a capacitor. Mathematically, this
has two different sign conventions, either from the generator perspective or from the load perspective. This is defined
by the direction of power flow from the component.

Both sign conventions are used in eDisGo depending upon the components being defined, similar to pypsa.

Generator Sign Convention

Fig. 1.2: Generator sign convention in detail

While defining time series for Generator, GeneratorFluctuating, and Storage, the generator sign convention is
used.

Load Sign Convention

The time series for Load is defined using the load sign convention.

1.5. Definition and units 27

eDisGo Documentation, Release 0.2.0

Fig. 1.3: Load sign convention in detail

1.5.2 Reactive Power Sign Convention

Generators and Loads in an AC power system can behave either like an inductor or a capacitor. Mathematically, this
has two different sign conventions, either from the generator perspective or from the load perspective.

Both sign conventions are used in eDisGo, similar to pypsa. While defining time series for Generator,
GeneratorFluctuating, and Storage, the generator sign convention is used. This means that when the reactive
power (Q) is positive, the component shows capacitive behaviour and when the reactive power (Q) is negative, the
component shows inductive behaviour.

The time series for Load is defined using the load sign convention. This means that when the reactive power (Q) is
positive, the component shows inductive behaviour and when the reactive power (Q) is negative, the component shows
capacitive behaviour. This is the direct opposite of the generator sign convention.

28 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

1.5.3 Units

Table 1.1: List of variables and units
Variable Sym-

bol
Unit Comment

Current I kA
Length l km
Active Power P MW
Reactive Power Q MVar
Apparent Power S MVA
Resistance R Ohm

or
Ohm/km

Ohm/km applies to lines

Reactance X Ohm
or
Ohm/km

Ohm/km applies to lines

Voltage V kV
Inductance L mH/km
Capacitance C µF/km
Costs • kEUR

1.6 Default configuration data

Following you find the default configuration files.

1.6.1 config_db_tables

The config file config_db_tables.cfg holds data about which database connection to use from your saved database
connections and which dataprocessing version.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

[data_source]

oedb_data_source = versioned

[model_draft]

conv_generators_prefix = t_ego_supply_conv_powerplant_
conv_generators_suffix = _mview
re_generators_prefix = t_ego_supply_res_powerplant_
re_generators_suffix = _mview

(continues on next page)

1.6. Default configuration data 29

eDisGo Documentation, Release 0.2.0

(continued from previous page)

res_feedin_data = EgoRenewableFeedin
load_data = EgoDemandHvmvDemand
load_areas = EgoDemandLoadarea

#conv_generators_nep2035 = t_ego_supply_conv_powerplant_nep2035_mview
#conv_generators_ego100 = ego_supply_conv_powerplant_ego100_mview
#re_generators_nep2035 = t_ego_supply_res_powerplant_nep2035_mview
#re_generators_ego100 = t_ego_supply_res_powerplant_ego100_mview

[versioned]

conv_generators_prefix = t_ego_dp_conv_powerplant_
conv_generators_suffix = _mview
re_generators_prefix = t_ego_dp_res_powerplant_
re_generators_suffix = _mview
res_feedin_data = EgoRenewableFeedin
load_data = EgoDemandHvmvDemand
load_areas = EgoDemandLoadarea

version = v0.4.5

1.6.2 config_grid_expansion

The config file config_grid_expansion.cfg holds data mainly needed to determine grid expansion needs and costs
- these are standard equipment to use in grid expansion and its costs, as well as allowed voltage deviations and line load
factors.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

[grid_expansion_standard_equipment]

standard equipment
==================
Standard equipment for grid expansion measures. Source: Rehtanz et. al.:
→˓"Verteilnetzstudie für das Land Baden-Württemberg", 2017.
hv_mv_transformer = 40 MVA
mv_lv_transformer = 630 kVA
mv_line_10kv = NA2XS2Y 3x1x185 RM/25
mv_line_20kv = NA2XS2Y 3x1x240
lv_line = NAYY 4x1x150

[grid_expansion_allowed_voltage_deviations]

allowed voltage deviations
==========================

(continues on next page)

30 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

(continued from previous page)

relevant for all cases
feed-in_case_lower = 0.9
load_case_upper = 1.1

COMBINED MV+LV

hv_mv_trafo_offset:
offset which is set at HV-MV station
(pos. if op. voltage is increased, neg. if decreased)
hv_mv_trafo_offset = 0.0

hv_mv_trafo_control_deviation:
control deviation of HV-MV station
(always pos. in config; pos. or neg. usage depending on case in edisgo)
hv_mv_trafo_control_deviation = 0.0

mv_lv_max_v_deviation:
max. allowed voltage deviation according to DIN EN 50160
caution: offset and control deviation at HV-MV station must be considered in␣
→˓calculations!
mv_lv_feed-in_case_max_v_deviation = 0.1
mv_lv_load_case_max_v_deviation = 0.1

MV ONLY

mv_load_case_max_v_deviation:
max. allowed voltage deviation in MV grids (load case)
mv_load_case_max_v_deviation = 0.015

mv_feed-in_case_max_v_deviation:
max. allowed voltage deviation in MV grids (feed-in case)
according to BDEW
mv_feed-in_case_max_v_deviation = 0.05

LV ONLY

max. allowed voltage deviation in LV grids (load case)
lv_load_case_max_v_deviation = 0.065

max. allowed voltage deviation in LV grids (feed-in case)
according to VDE-AR-N 4105
lv_feed-in_case_max_v_deviation = 0.035

max. allowed voltage deviation in MV/LV stations (load case)
mv_lv_station_load_case_max_v_deviation = 0.02

max. allowed voltage deviation in MV/LV stations (feed-in case)
mv_lv_station_feed-in_case_max_v_deviation = 0.015

[grid_expansion_load_factors]

load factors

(continues on next page)

1.6. Default configuration data 31

eDisGo Documentation, Release 0.2.0

(continued from previous page)

============
Source: Rehtanz et. al.: "Verteilnetzstudie für das Land Baden-Württemberg", 2017.
mv_load_case_transformer = 0.5
mv_load_case_line = 0.5
mv_feed-in_case_transformer = 1.0
mv_feed-in_case_line = 1.0

lv_load_case_transformer = 1.0
lv_load_case_line = 1.0
lv_feed-in_case_transformer = 1.0
lv_feed-in_case_line = 1.0

costs
============

[costs_cables]

costs in kEUR/km
costs for cables without earthwork are taken from [1] (costs for standard
cables are used here as representative since they have average costs), costs
including earthwork are taken from [2]
[1] https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/
→˓Unternehmen_Institutionen/Netzentgelte/Anreizregulierung/GA_AnalytischeKostenmodelle.
→˓pdf?__blob=publicationFile&v=1
[2] https://shop.dena.de/fileadmin/denashop/media/Downloads_Dateien/esd/9100_dena-
→˓Verteilnetzstudie_Abschlussbericht.pdf
costs including earthwork costs depend on population density according to [2]
here "rural" corresponds to a population density of <= 500 people/km2

and "urban" corresponds to a population density of > 500 people/km2

lv_cable = 9
lv_cable_incl_earthwork_rural = 60
lv_cable_incl_earthwork_urban = 100
mv_cable = 20
mv_cable_incl_earthwork_rural = 80
mv_cable_incl_earthwork_urban = 140

[costs_transformers]

costs in kEUR, source: DENA Verteilnetzstudie
lv = 10
mv = 1000

32 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

1.6.3 config_timeseries

The config file config_timeseries.cfg holds data to define the two worst-case scenarions heavy load flow (‘load
case’) and reverse power flow (‘feed-in case’) used in conventional grid expansion planning, power factors and modes
(inductive or capacitative) to generate reactive power time series, as well as configurations of the demandlib in case
load time series are generated using the oemof demandlib.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

This file contains relevant data to generate load and feed-in time series.
Scale factors are used in worst-case scenarios.
Power factors are used to generate reactive power time series.

[worst_case_scale_factor]

scale factors
===========================
scale factors describe actual power to nominal power ratio of generators and loads in␣
→˓worst-case scenarios
following values provided by "dena-Verteilnetzstudie. Ausbau- und
Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030", .p. 98

conventional load
factors taken from "dena-Verteilnetzstudie. Ausbau- und
Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030", p. 98
mv_feed-in_case_load = 0.15
lv_feed-in_case_load = 0.1
mv_load_case_load = 1.0
lv_load_case_load = 1.0

generators
factors taken from "dena-Verteilnetzstudie. Ausbau- und
Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030", p. 98
feed-in_case_feed-in_pv = 0.85
feed-in_case_feed-in_wind = 1.0
feed-in_case_feed-in_other = 1.0
load_case_feed-in_pv = 0.0
load_case_feed-in_wind = 0.0
load_case_feed-in_other = 0.0

storage units (own values)
feed-in_case_storage = 1.0
load_case_storage = -1.0

charging points (temporary own values)

simultaneity of 0.15 follows assumptions from "dena-Verteilnetzstudie" for␣
→˓conventional loads

(continues on next page)

1.6. Default configuration data 33

eDisGo Documentation, Release 0.2.0

(continued from previous page)

mv_feed-in_case_cp_home = 0.15
mv_feed-in_case_cp_work = 0.15
mv_feed-in_case_cp_public = 0.15
mv_feed-in_case_cp_hpc = 0.15

simultaneity in feed-in case is in dena study "Integrierte Energiewende" (p. 90) as␣
→˓well assumed to be zero
lv_feed-in_case_cp_home = 0.0
lv_feed-in_case_cp_work = 0.0
lv_feed-in_case_cp_public = 0.0
lv_feed-in_case_cp_hpc = 0.0

simultaneity in load case should be dependent on number of charging points in the grid
as well as charging power
assumed factors for home and work charging higher for LV, as simultaneity of charging
decreases with the number of charging points

simultaneity of 0.2 follows assumptions from dena study "Integrierte Energiewende" (p.␣
→˓90) where
simultaneity for 70-500 charging points lies around 20%
mv_load_case_cp_home = 0.2
mv_load_case_cp_work = 0.2
mv_load_case_cp_public = 1.0
mv_load_case_cp_hpc = 1.0

lv_load_case_cp_home = 1.0
lv_load_case_cp_work = 1.0
lv_load_case_cp_public = 1.0
lv_load_case_cp_hpc = 1.0

heat pumps (temporary own values)

simultaneity in feed-in case is in dena study "Integrierte Energiewende" (p. 90) as␣
→˓well assumed to be zero
mv_feed-in_case_hp = 0.0
lv_feed-in_case_hp = 0.0

simultaneity in load case should be dependent on number of heat pumps in the grid
simultaneity of 0.8 follows assumptions from dena study "Integrierte Energiewende" (p.␣
→˓90) where
simultaneity for 70-500 heat pumps lies around 80%
mv_load_case_hp = 0.8
lv_load_case_hp = 1.0

[reactive_power_factor]

power factors
===========================
power factors used to generate reactive power time series for loads and generators

mv_gen = 0.9
mv_load = 0.9

(continues on next page)

34 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

(continued from previous page)

mv_storage = 0.9
mv_cp = 1.0
mv_hp = 1.0
lv_gen = 0.95
lv_load = 0.95
lv_storage = 0.95
lv_cp = 1.0
lv_hp = 1.0

[reactive_power_mode]

power factor modes
===========================
power factor modes used to generate reactive power time series for loads and generators

mv_gen = inductive
mv_load = inductive
mv_storage = inductive
mv_cp = inductive
mv_hp = inductive
lv_gen = inductive
lv_load = inductive
lv_storage = inductive
lv_cp = inductive
lv_hp = inductive

[demandlib]

demandlib data
===========================
data used in the demandlib to generate industrial load profile
see IndustrialProfile in https://github.com/oemof/demandlib/blob/master/demandlib/
→˓particular_profiles.py
for further information

scaling factors for night and day of weekdays and weekend days
week_day = 0.8
week_night = 0.6
weekend_day = 0.6
weekend_night = 0.6
tuple specifying the beginning/end of a workday (e.g. 18:00)
day_start = 6:00
day_end = 22:00

1.6. Default configuration data 35

eDisGo Documentation, Release 0.2.0

1.6.4 config_grid

The config file config_grid.cfg holds data to specify parameters used when connecting new generators to the grid
and where to position disconnecting points.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

Config file to specify parameters used when connecting new generators to the grid and
where to position disconnecting points.

[geo]

WGS84: 4326
srid = 4326

[grid_connection]

branch_detour_factor:
normally, lines do not go straight from A to B due to obstacles etc. Therefore, a␣
→˓detour factor is used.
unit: -
branch_detour_factor = 1.3

conn_buffer_radius:
radius used to find connection targets
unit: m
conn_buffer_radius = 2000

conn_buffer_radius_inc:
radius which is incrementally added to connect_buffer_radius as long as no target␣
→˓is found
unit: m
conn_buffer_radius_inc = 1000

conn_diff_tolerance:
threshold which is used to determine if 2 objects are on the same position
unit: -
conn_diff_tolerance = 0.0001

[disconnecting_point]

Positioning of disconnecting points: Can be position at location of most
balanced load or generation. Choose load, generation, loadgen
position = load

36 Chapter 1. Contents

eDisGo Documentation, Release 0.2.0

1.7 Equipment data

The following tables hold all data of cables, lines and transformers used.

Table 1.2: LV cables
name U_n I_max_th R_per_km L_per_km C_per_km
#- kV kA ohm/km mH/km uF/km
NAYY 4x1x300 0.4 0.419 0.1 0.279 0
NAYY 4x1x240 0.4 0.364 0.125 0.254 0
NAYY 4x1x185 0.4 0.313 0.164 0.256 0
NAYY 4x1x150 0.4 0.275 0.206 0.256 0
NAYY 4x1x120 0.4 0.245 0.253 0.256 0
NAYY 4x1x95 0.4 0.215 0.320 0.261 0
NAYY 4x1x50 0.4 0.144 0.449 0.270 0
NAYY 4x1x35 0.4 0.123 0.868 0.271 0

Table 1.3: MV cables
name U_n I_max_th R_per_km L_per_km C_per_km
#- kV kA ohm/km mH/km uF/km
NA2XS2Y 3x1x185 RM/25 10 0.357 0.164 0.38 0.41
NA2XS2Y 3x1x240 RM/25 10 0.417 0.125 0.36 0.47
NA2XS2Y 3x1x300 RM/25 10 0.466 0.1 0.35 0.495
NA2XS2Y 3x1x400 RM/35 10 0.535 0.078 0.34 0.57
NA2XS2Y 3x1x500 RM/35 10 0.609 0.061 0.32 0.63
NA2XS2Y 3x1x150 RE/25 20 0.319 0.206 0.4011 0.24
NA2XS2Y 3x1x240 20 0.417 0.13 0.3597 0.304
NA2XS(FL)2Y 3x1x300 RM/25 20 0.476 0.1 0.37 0.25
NA2XS(FL)2Y 3x1x400 RM/35 20 0.525 0.078 0.36 0.27
NA2XS(FL)2Y 3x1x500 RM/35 20 0.598 0.06 0.34 0.3

Table 1.4: MV overhead lines
name U_n I_max_th R_per_km L_per_km C_per_km
#- kV kA ohm/km mH/km uF/km
48-AL1/8-ST1A 10 0.21 0.35 1.11 0.0104
94-AL1/15-ST1A 10 0.35 0.33 1.05 0.0112
122-AL1/20-ST1A 10 0.41 0.31 0.99 0.0115
48-AL1/8-ST1A 20 0.21 0.37 1.18 0.0098
94-AL1/15-ST1A 20 0.35 0.35 1.11 0.0104
122-AL1/20-ST1A 20 0.41 0.34 1.08 0.0106

1.7. Equipment data 37

eDisGo Documentation, Release 0.2.0

Table 1.5: LV transformers
name S_nom u_kr P_k
MVA % MW
100 kVA 0.1 4 0.00175
160 kVA 0.16 4 0.00235
250 kVA 0.25 4 0.00325
400 kVA 0.4 4 0.0046
630 kVA 0.63 4 0.0065
800 kVA 0.8 6 0.0084
1000 kVA 1.0 6 0.00105

Table 1.6: MV transformers
name S_nom
MVA
20 MVA 20
32 MVA 32
40 MVA 40
63 MVA 63

1.8 API

1.8.1 EDisGo class

class edisgo.EDisGo(**kwargs)
Provides the top-level API for invocation of data import, power flow analysis, network reinforcement, flexibility
measures, etc..

Parameters
• ding0_grid (str) – Path to directory containing csv files of network to be loaded.

• generator_scenario (None or str, optional) – If None, the generator park of the imported
grid is kept as is. Otherwise defines which scenario of future generator park to use and in-
vokes grid integration of these generators. Possible options are ‘nep2035’ and ‘ego100’.
These are scenarios from the research project open_eGo (see final report for more informa-
tion on the scenarios). See import_generators for further information on how generators
are integrated and what further options there are. Default: None.

• timeindex (None or pandas.DatetimeIndex, optional) – Defines the time steps feed-in and
demand time series of all generators, loads and storage units need to be set. The time index
is for example used as default for time steps considered in the power flow analysis and when
checking the integrity of the network. Providing a time index is only optional in case a worst
case analysis is set up using set_time_series_worst_case_analysis(). In all other
cases a time index needs to be set manually.

• config_path (None or str or dict) – Path to the config directory. Options are:

– ’default’ (default)
If config_path is set to ‘default’, the provided default config files are used directly.

– str
If config_path is a string, configs will be loaded from the directory specified by con-

38 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://openegoproject.wordpress.com/
https://www.uni-flensburg.de/fileadmin/content/abteilungen/industrial/dokumente/downloads/veroeffentlichungen/forschungsergebnisse/20190426endbericht-openego-fkz0325881-final.pdf
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.2.0

fig_path. If the directory does not exist, it is created. If config files don’t exist, the
default config files are copied into the directory.

– dict
A dictionary can be used to specify different paths to the different config files. The
dictionary must have the following keys:

∗ ’config_db_tables’

∗ ’config_grid’

∗ ’config_grid_expansion’

∗ ’config_timeseries’

Values of the dictionary are paths to the corresponding config file. In contrast to the
other options, the directories and config files must exist and are not automatically cre-
ated.

– None
If config_path is None, configs are loaded from the edisgo default config directory
($HOME$/.edisgo). If the directory does not exist, it is created. If config files don’t
exist, the default config files are copied into the directory.

Default: “default”.

topology

The topology is a container object holding the topology of the grids including buses, lines, transformers,
switches and components connected to the grid including generators, loads and storage units.

Type
Topology

timeseries

Container for active and reactive power time series of generators, loads and storage units.

Type
TimeSeries

results

This is a container holding all calculation results from power flow analyses and grid reinforcement.

Type
Results

electromobility

This class holds data on charging processes (how long cars are parking at a charging station, how much they
need to charge, etc.) necessary to apply different charging strategies, as well as information on potential
charging sites and integrated charging parks.

Type
Electromobility

heat_pump

This is a container holding heat pump data such as COP, heat demand to be served and heat storage infor-
mation.

Type
HeatPump

1.8. API 39

eDisGo Documentation, Release 0.2.0

property config

eDisGo configuration data.

Parameters
kwargs (dict) – Dictionary with keyword arguments to set up Config object. See param-
eters of Config class for more information on possible input parameters.

Returns
Config object with configuration data from config files.

Return type
Config

import_ding0_grid(path)
Import ding0 topology data from csv files in the format as Ding0 provides it.

Parameters
path (str) – Path to directory containing csv files of network to be loaded.

set_timeindex(timeindex)
Sets timeindex all time-dependent attributes are indexed by.

The time index is for example used as default for time steps considered in the power flow analysis and
when checking the integrity of the network.

Parameters
timeindex (pandas.DatetimeIndex) – Time index to set.

set_time_series_manual(generators_p=None, loads_p=None, storage_units_p=None,
generators_q=None, loads_q=None, storage_units_q=None)

Sets given component time series.

If time series for a component were already set before, they are overwritten.

Parameters
• generators_p (pandas.DataFrame) – Active power time series in MW of generators.

Index of the data frame is a datetime index. Columns contain generators names of
generators to set time series for. Default: None.

• loads_p (pandas.DataFrame) – Active power time series in MW of loads. Index of
the data frame is a datetime index. Columns contain load names of loads to set time
series for. Default: None.

• storage_units_p (pandas.DataFrame) – Active power time series in MW of storage
units. Index of the data frame is a datetime index. Columns contain storage unit names
of storage units to set time series for. Default: None.

• generators_q (pandas.DataFrame) – Reactive power time series in MVA of genera-
tors. Index of the data frame is a datetime index. Columns contain generators names
of generators to set time series for. Default: None.

• loads_q (pandas.DataFrame) – Reactive power time series in MVA of loads. Index
of the data frame is a datetime index. Columns contain load names of loads to set time
series for. Default: None.

• storage_units_q (pandas.DataFrame) – Reactive power time series in MVA of stor-
age units. Index of the data frame is a datetime index. Columns contain storage unit
names of storage units to set time series for. Default: None.

40 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/openego/ding0
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Notes

This function raises a warning in case a time index was not previously set. You can set the time index upon
initialisation of the EDisGo object by providing the input parameter ‘timeindex’ or using the function
set_timeindex. Also make sure that the time steps for which time series are provided include the set
time index.

set_time_series_worst_case_analysis(cases=None, generators_names=None, loads_names=None,
storage_units_names=None)

Sets demand and feed-in of all loads, generators and storage units for the specified worst cases.

See set_worst_case() for more information.

Parameters
• cases (str or list(str)) – List with worst-cases to generate time series for. Can

be ‘feed-in_case’, ‘load_case’ or both. Defaults to None in which case both ‘feed-
in_case’ and ‘load_case’ are set up.

• generators_names (list(str)) – Defines for which generators to set worst case
time series. If None, time series are set for all generators. Default: None.

• loads_names (list(str)) – Defines for which loads to set worst case time series.
If None, time series are set for all loads. Default: None.

• storage_units_names (list(str)) – Defines for which storage units to set worst
case time series. If None, time series are set for all storage units. Default: None.

set_time_series_active_power_predefined(fluctuating_generators_ts=None,
fluctuating_generators_names=None,
dispatchable_generators_ts=None,
dispatchable_generators_names=None,
conventional_loads_ts=None,
conventional_loads_names=None,
charging_points_ts=None,
charging_points_names=None)

Uses predefined feed-in or demand profiles.

Predefined profiles comprise i.e. standard electric conventional load profiles for different sectors generated
using the oemof demandlib or feed-in time series of fluctuating solar and wind generators provided on the
OpenEnergy DataBase for the weather year 2011.

This function can also be used to provide your own profiles per technology or load sector.

Parameters
• fluctuating_generators_ts (str or pandas.DataFrame) – Defines which

technology-specific (or technology and weather cell specific) time series to use to
set active power time series of fluctuating generators. See parameter ts_generators
in predefined_fluctuating_generators_by_technology() for more in-
formation. If None, no time series of fluctuating generators are set. Default:
None.

• fluctuating_generators_names (list(str)) – Defines for which fluctuating
generators to apply technology-specific time series. See parameter generator_names
in predefined_dispatchable_generators_by_technology() for more infor-
mation. Default: None.

• dispatchable_generators_ts (pandas.DataFrame) – Defines which
technology-specific time series to use to set active power time se-

1.8. API 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/oemof/demandlib/
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

ries of dispatchable generators. See parameter ts_generators in
predefined_dispatchable_generators_by_technology() for more in-
formation. If None, no time series of dispatchable generators are set. Default:
None.

• dispatchable_generators_names (list(str)) – Defines for which dispatchable
generators to apply technology-specific time series. See parameter generator_names
in predefined_dispatchable_generators_by_technology() for more infor-
mation. Default: None.

• conventional_loads_ts (pandas.DataFrame) – Defines which sector-specific time
series to use to set active power time series of conventional loads. See parameter
ts_loads in predefined_conventional_loads_by_sector() for more informa-
tion. If None, no time series of conventional loads are set. Default: None.

• conventional_loads_names (list(str)) – Defines for which conventional
loads to apply technology-specific time series. See parameter load_names in
predefined_conventional_loads_by_sector() for more information. Default:
None.

• charging_points_ts (pandas.DataFrame) – Defines which use-case-specific time
series to use to set active power time series of charging points. See parameter
ts_loads in predefined_charging_points_by_use_case() for more informa-
tion. If None, no time series of charging points are set. Default: None.

• charging_points_names (list(str)) – Defines for which charging
points to apply use-case-specific time series. See parameter load_names in
predefined_charging_points_by_use_case() for more information. Default:
None.

Notes

This function raises a warning in case a time index was not previously set. You can set the time index upon
initialisation of the EDisGo object by providing the input parameter ‘timeindex’ or using the function
set_timeindex. Also make sure that the time steps for which time series are provided include the set
time index.

set_time_series_reactive_power_control(control='fixed_cosphi',
generators_parametrisation='default',
loads_parametrisation='default',
storage_units_parametrisation='default')

Set reactive power time series of components.

Parameters
• control (str) – Type of reactive power control to apply. Currently the only option

is ‘fixed_coshpi’. See fixed_cosphi() for further information.

• generators_parametrisation (str or pandas.DataFrame) – See parameter genera-
tors_parametrisation in fixed_cosphi() for further information. Here, per default,
the option ‘default’ is used.

• loads_parametrisation (str or pandas.DataFrame) – See parameter
loads_parametrisation in fixed_cosphi() for further information. Here, per
default, the option ‘default’ is used.

• storage_units_parametrisation (str or pandas.DataFrame) – See parameter
storage_units_parametrisation in fixed_cosphi() for further information. Here,

42 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html

eDisGo Documentation, Release 0.2.0

per default, the option ‘default’ is used.

Notes

Be careful to set parametrisation of other component types to None if you only want to set reactive power
of certain components. See example below for further information.

Examples

To only set reactive power time series of one generator using default configurations you can do the follow-
ing:

>>> self.set_time_series_reactive_power_control(
>>> generators_parametrisation=pd.DataFrame(
>>> {
>>> "components": [["Generator_1"]],
>>> "mode": ["default"],
>>> "power_factor": ["default"],
>>> },
>>> index=[1],
>>>),
>>> loads_parametrisation=None,
>>> storage_units_parametrisation=None
>>>)

In the example above, loads_parametrisation and storage_units_parametrisation need to be set to None,
otherwise already existing time series would be overwritten.

To only change configuration of one load and for all other components use default configurations you can
do the following:

>>> self.set_time_series_reactive_power_control(
>>> loads_parametrisation=pd.DataFrame(
>>> {
>>> "components": [["Load_1"],
>>> self.topology.loads_df.index.drop(["Load_1"])],
>>> "mode": ["capacitive", "default"],
>>> "power_factor": [0.98, "default"],
>>> },
>>> index=[1, 2],
>>>)
>>>)

In the example above, generators_parametrisation and storage_units_parametrisation do not need to be
set as default configurations are per default used for all generators and storage units anyways.

to_pypsa(mode=None, timesteps=None, check_edisgo_integrity=False, **kwargs)
Convert grid to PyPSA.Network representation.

You can choose between translation of the MV and all underlying LV grids (mode=None (default)), the
MV network only (mode=’mv’ or mode=’mvlv’) or a single LV network (mode=’lv’).

Parameters

1.8. API 43

https://pypsa.readthedocs.io/en/latest/components.html#network

eDisGo Documentation, Release 0.2.0

• mode (str) – Determines network levels that are translated to PyPSA.Network. Pos-
sible options are:

– None

MV and underlying LV networks are exported. This is the default.

– ’mv’

Only MV network is exported. MV/LV transformers are not exported in this
mode. Loads, generators and storage units in underlying LV grids are con-
nected to the respective MV/LV station’s primary side. Per default, they are all
connected separately, but you can also choose to aggregate them. See parame-
ters aggregate_loads, aggregate_generators and aggregate_storages for more
information.

– ’mvlv’

This mode works similar as mode ‘mv’, with the difference that MV/LV trans-
formers are as well exported and LV components connected to the respective
MV/LV station’s secondary side. Per default, all components are connected
separately, but you can also choose to aggregate them. See parameters aggre-
gate_loads, aggregate_generators and aggregate_storages for more informa-
tion.

– ’lv’

Single LV network topology including the MV/LV transformer is exported.
The LV grid to export is specified through the parameter lv_grid_id. The slack
is positioned at the secondary side of the MV/LV station.

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Specifies which time
steps to export to pypsa representation to e.g. later on use in power flow analysis. It
defaults to None in which case all time steps in timeindex are used. Default: None.

• check_edisgo_integrity (bool) – Check integrity of edisgo object before trans-
lating to pypsa. This option is meant to help the identification of possible sources of
errors if the power flow calculations fail. See check_integrity for more informa-
tion.

• use_seed (bool) – Use a seed for the initial guess for the Newton-Raphson algorithm.
Only available when MV level is included in the power flow analysis. If True, uses
voltage magnitude results of previous power flow analyses as initial guess in case of
PQ buses. PV buses currently do not occur and are therefore currently not supported.
Default: False.

• lv_grid_id (int or str) – ID (e.g. 1) or name (string representation, e.g. “LV-
Grid_1”) of LV grid to export in case mode is ‘lv’.

• aggregate_loads (str) – Mode for load aggregation in LV grids in case mode is
‘mv’ or ‘mvlv’. Can be ‘sectoral’ aggregating the loads sector-wise, ‘all’ aggregating
all loads into one or None, not aggregating loads but appending them to the station
one by one. Default: None.

• aggregate_generators (str) – Mode for generator aggregation in LV grids in case
mode is ‘mv’ or ‘mvlv’. Can be ‘type’ aggregating generators per generator type,
‘curtailable’ aggregating ‘solar’ and ‘wind’ generators into one and all other generators
into another one, or None, where no aggregation is undertaken and generators are
added to the station one by one. Default: None.

44 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://pypsa.readthedocs.io/en/latest/components.html#network
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• aggregate_storages (str) – Mode for storage unit aggregation in LV grids in case
mode is ‘mv’ or ‘mvlv’. Can be ‘all’ where all storage units in an LV grid are ag-
gregated to one storage unit or None, in which case no aggregation is conducted and
storage units are added to the station. Default: None.

Returns
PyPSA.Network representation.

Return type
PyPSA.Network

to_graph()

Returns networkx graph representation of the grid.

Returns
Graph representation of the grid as networkx Ordered Graph, where lines are represented
by edges in the graph, and buses and transformers are represented by nodes.

Return type
networkx.Graph

import_generators(generator_scenario=None, **kwargs)
Gets generator park for specified scenario and integrates them into the grid.

Currently, the only supported data source is scenario data generated in the research project open_eGo.
You can choose between two scenarios: ‘nep2035’ and ‘ego100’. You can get more information on the
scenarios in the final report.

The generator data is retrieved from the open energy platform from tables for conventional power plants
and renewable power plants.

When the generator data is retrieved, the following steps are conducted:

• Step 1: Update capacity of existing generators if ` update_existing` is True, which it is by default.

• Step 2: Remove decommissioned generators if remove_decommissioned is True, which it is by de-
fault.

• Step 3: Integrate new MV generators.

• Step 4: Integrate new LV generators.

For more information on how generators are integrated, see connect_to_mv and connect_to_lv.

After the generator park is changed there may be grid issues due to the additional in-feed. These are not
solved automatically. If you want to have a stable grid without grid issues you can invoke the automatic
grid expansion through the function reinforce.

Parameters
• generator_scenario (str) – Scenario for which to retrieve generator data. Possible

options are ‘nep2035’ and ‘ego100’.

• kwargs – See edisgo.io.generators_import.oedb().

analyze(mode=None, timesteps=None, raise_not_converged=True, troubleshooting_mode=None,
range_start=0.1, range_num=10, **kwargs)

Conducts a static, non-linear power flow analysis.

Conducts a static, non-linear power flow analysis using PyPSA and writes results (active, reactive and
apparent power as well as current on lines and voltages at buses) to Results (e.g. v_res for voltages).

Parameters

1.8. API 45

https://docs.python.org/3/library/stdtypes.html#str
https://pypsa.readthedocs.io/en/latest/components.html#network
https://pypsa.readthedocs.io/en/latest/components.html#network
https://networkx.github.io/documentation/stable/reference/classes/graph.html#network.Graph
https://openegoproject.wordpress.com/
https://www.uni-flensburg.de/fileadmin/content/abteilungen/industrial/dokumente/downloads/veroeffentlichungen/forschungsergebnisse/20190426endbericht-openego-fkz0325881-final.pdf
https://openenergy-platform.org/
https://openenergy-platform.org/dataedit/view/supply/ego_dp_conv_powerplant
https://openenergy-platform.org/dataedit/view/supply/ego_dp_res_powerplant
https://docs.python.org/3/library/stdtypes.html#str
https://pypsa.readthedocs.io/en/latest/power_flow.html#full-non-linear-power-flow

eDisGo Documentation, Release 0.2.0

• mode (str or None) – Allows to toggle between power flow analysis for the whole
network or just the MV or one LV grid. Possible options are:

– None (default)

Power flow analysis is conducted for the whole network including MV grid and
underlying LV grids.

– ’mv’

Power flow analysis is conducted for the MV level only. LV loads, generators
and storage units are aggregated at the respective MV/LV stations’ primary
side. Per default, they are all connected separately, but you can also choose to
aggregate them. See parameters aggregate_loads, aggregate_generators and
aggregate_storages in to_pypsa for more information.

– ’mvlv’

Power flow analysis is conducted for the MV level only. In contrast to mode
‘mv’ LV loads, generators and storage units are in this case aggregated at the
respective MV/LV stations’ secondary side. Per default, they are all connected
separately, but you can also choose to aggregate them. See parameters ag-
gregate_loads, aggregate_generators and aggregate_storages in to_pypsa for
more information.

– ’lv’

Power flow analysis is conducted for one LV grid only. ID or name of the
LV grid to conduct power flow analysis for needs to be provided through key-
word argument ‘lv_grid_id’ as integer or string. See parameter lv_grid_id in
to_pypsa for more information. The slack is positioned at the secondary side
of the MV/LV station.

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies for
which time steps to conduct the power flow analysis. It defaults to None in which case
all time steps in timeindex are used.

• raise_not_converged (bool) – If True, an error is raised in case power flow anal-
ysis did not converge for all time steps. Default: True.

• troubleshooting_mode (str or None) – Two optional troubleshooting methods
in case of nonconvergence of nonlinear power flow (cf. [1])

– None (default)
Power flow analysis is conducted using nonlinear power flow method.

– ’lpf’
Non-linear power flow initial guess is seeded with the voltage angles from the
linear power flow.

– ’iteration’
Power flow analysis is conducted by reducing all power values of generators and
loads to a fraction, e.g. 10%, solving the load flow and using it as a seed for the
power at 20%, iteratively up to 100%.

• range_start (float, optional) – Specifies the minimum fraction that power val-
ues are set to when using troubleshooting_mode ‘iteration’. Must be between 0 and 1.
Default: 0.1.

• range_num (int, optional) – Specifies the number of fraction samples to generate
when using troubleshooting_mode ‘iteration’. Must be non-negative. Default: 10.

46 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

eDisGo Documentation, Release 0.2.0

• kwargs (dict) – Possible other parameters comprise all other parameters that can be
set in edisgo.io.pypsa_io.to_pypsa().

Returns
Returns the time steps for which power flow analysis did not converge.

Return type
pandas.DatetimeIndex

References

[1] https://pypsa.readthedocs.io/en/latest/troubleshooting.html

reinforce(timesteps_pfa=None, copy_grid=False, max_while_iterations=20, combined_analysis=False,
mode=None, without_generator_import=False, **kwargs)

Reinforces the network and calculates network expansion costs.

If the edisgo.network.timeseries.TimeSeries.is_worst_case is True input for timesteps_pfa
and mode are overwritten and therefore ignored.

See edisgo.flex_opt.reinforce_grid.reinforce_grid() for more information on input parame-
ters and methodology.

Parameters
is_worst_case (bool) – Is used to overwrite the return value from edisgo.network.
timeseries.TimeSeries.is_worst_case. If True reinforcement is calculated for
worst-case MV and LV cases separately.

Return type
Results

perform_mp_opf(timesteps, storage_series=None, **kwargs)
Run optimal power flow with julia.

Parameters
• timesteps (list) – List of timesteps to perform OPF for.

• kwargs – See run_mp_opf() for further information.

Returns
Status of optimization.

Return type
str

add_component(comp_type, ts_active_power=None, ts_reactive_power=None, **kwargs)
Adds single component to network.

Components can be lines or buses as well as generators, loads, or storage units. If add_ts is set to True,
time series of elements are set as well. Currently, time series need to be provided.

Parameters
• comp_type (str) – Type of added component. Can be ‘bus’, ‘line’, ‘load’, ‘generator’,

or ‘storage_unit’.

• ts_active_power (pandas.Series or None) – Active power time series of added com-
ponent. Index of the series must contain all time steps in timeindex. Values are active
power per time step in MW. Defaults to None in which case no time series is set.

• ts_reactive_power (pandas.Series or str or None) – Possible options are:

1.8. API 47

https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
https://pypsa.readthedocs.io/en/latest/troubleshooting.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.series.html

eDisGo Documentation, Release 0.2.0

– pandas.Series

Reactive power time series of added component. Index of the series must con-
tain all time steps in timeindex. Values are reactive power per time step in
MVA.

– ”default”

Reactive power time series is determined based on assumptions on fixed power
factor of the component. To this end, the power factors set in the config
section reactive_power_factor and the power factor mode, defining whether
components behave inductive or capacitive, given in the config section re-
active_power_mode, are used. This option requires you to provide an active
power time series. In case it was not provided, reactive power cannot be set
and a warning is raised.

– None

No reactive power time series is set.

Default: None

• **kwargs (dict) – Attributes of added component. See respective functions for re-
quired entries.

– ’bus’ : add_bus

– ’line’ : add_line

– ’load’ : add_load

– ’generator’ : add_generator

– ’storage_unit’ : add_storage_unit

integrate_component_based_on_geolocation(comp_type, geolocation, voltage_level=None,
add_ts=True, ts_active_power=None,
ts_reactive_power=None, **kwargs)

Adds single component to topology based on geolocation.

Currently components can be generators, charging points and heat pumps.

See connect_to_mv and connect_to_lv for more information.

Parameters
• comp_type (str) – Type of added component. Can be ‘generator’, ‘charging_point’

or ‘heat_pump’.

• geolocation (shapely.Point or tuple) – Geolocation of the new component. In case
of tuple, the geolocation must be given in the form (longitude, latitude).

• voltage_level (int, optional) – Specifies the voltage level the new component
is integrated in. Possible options are 4 (MV busbar), 5 (MV grid), 6 (LV busbar) or 7
(LV grid). If no voltage level is provided the voltage level is determined based on the
nominal power p_nom or p_set (given as kwarg) as follows:

– voltage level 4 (MV busbar): nominal power between 4.5 MW and 17.5 MW

– voltage level 5 (MV grid) : nominal power between 0.3 MW and 4.5 MW

– voltage level 6 (LV busbar): nominal power between 0.1 MW and 0.3 MW

– voltage level 7 (LV grid): nominal power below 0.1 MW

48 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.series.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://shapely.readthedocs.io/en/latest/manual.html#Point
https://docs.python.org/3/library/functions.html#int

eDisGo Documentation, Release 0.2.0

• add_ts (bool, optional) – Indicator if time series for component are added as
well. Default: True.

• ts_active_power (pandas.Series, optional) – Active power time series of added
component. Index of the series must contain all time steps in timeindex. Values
are active power per time step in MW. If you want to add time series (if add_ts is
True), you must provide a time series. It is not automatically retrieved.

• ts_reactive_power (pandas.Series, optional) – Reactive power time series of added
component. Index of the series must contain all time steps in timeindex. Values are
reactive power per time step in MVA. If you want to add time series (if add_ts is True),
you must provide a time series. It is not automatically retrieved.

• kwargs – Attributes of added component. See add_generator respectively
add_load methods for more information on required and optional parameters of gen-
erators respectively charging points and heat pumps.

remove_component(comp_type, comp_name, drop_ts=True)
Removes single component from network.

Components can be lines or buses as well as generators, loads, or storage units. If drop_ts is set to True,
time series of elements are deleted as well.

Parameters
• comp_type (str) – Type of removed component. Can be ‘bus’, ‘line’, ‘load’, ‘gener-

ator’, or ‘storage_unit’.

• comp_name (str) – Name of component to be removed.

• drop_ts (bool) – Indicator if time series for component are removed as well. Defaults
to True.

aggregate_components(aggregate_generators_by_cols=None, aggregate_loads_by_cols=None)
Aggregates generators and loads at the same bus.

By default all generators respectively loads at the same bus are aggregated. You can specify further
columns to consider in the aggregation, such as the generator type or the load sector. Make sure to al-
ways include the bus in the list of columns to aggregate by, as otherwise the topology would change.

Be aware that by aggregating components you loose some information e.g. on load sector or charging point
use case.

Parameters
• aggregate_generators_by_cols (list(str) or None) – List of columns to

aggregate generators at the same bus by. Valid columns are all columns in
generators_df . If an empty list is given, generators are not aggregated. Defaults to
None, in which case all generators at the same bus are aggregated.

• aggregate_loads_by_cols (list(str)) – List of columns to aggregate loads at
the same bus by. Valid columns are all columns in loads_df . If an empty list is given,
generators are not aggregated. Defaults to None, in which case all loads at the same
bus are aggregated.

import_electromobility(simbev_directory, tracbev_directory, import_electromobility_data_kwds=None,
allocate_charging_demand_kwds=None)

Imports electromobility data and integrates charging points into grid.

So far, this function requires electromobility data from SimBEV (required version: 3083c5a) and
TracBEV (required version: 14d864c) to be stored in the directories specified through the parameters

1.8. API 49

https://docs.python.org/3/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/rl-institut/simbev
https://github.com/rl-institut/simbev/commit/86076c936940365587c9fba98a5b774e13083c5a
https://github.com/rl-institut/tracbev
https://github.com/rl-institut/tracbev/commit/03e335655770a377166c05293a966052314d864c

eDisGo Documentation, Release 0.2.0

simbev_directory and tracbev_directory. SimBEV provides data on standing times, charging demand, etc.
per vehicle, whereas TracBEV provides potential charging point locations.

After electromobility data is loaded, the charging demand from SimBEV is allocated to potential charging
points from TracBEV. Afterwards, all potential charging points with charging demand allocated to them
are integrated into the grid.

Be aware that this function does not yield charging time series per charging point but only charging pro-
cesses (see charging_processes_df for more information). The actual charging time series are deter-
mined through applying a charging strategy using the function charging_strategy.

Parameters
• simbev_directory (str) – SimBEV directory holding SimBEV data.

• tracbev_directory (str) – TracBEV directory holding TracBEV data.

• import_electromobility_data_kwds (dict) – These may contain any further at-
tributes you want to specify when calling the function to import electromobility data
from SimBEV and TracBEV using import_electromobility().

gc_to_car_rate_home
[float] Specifies the minimum rate between potential charging parks points for the
use case “home” and the total number of cars. Default 0.5.

gc_to_car_rate_work
[float] Specifies the minimum rate between potential charging parks points for the
use case “work” and the total number of cars. Default 0.25.

gc_to_car_rate_public
[float] Specifies the minimum rate between potential charging parks points for the
use case “public” and the total number of cars. Default 0.1.

gc_to_car_rate_hpc
[float] Specifies the minimum rate between potential charging parks points for the
use case “hpc” and the total number of cars. Default 0.005.

mode_parking_times
[str] If the mode_parking_times is set to “frugal” only parking times with any charg-
ing demand are imported. Any other input will lead to all parking and driving events
being imported. Default “frugal”.

charging_processes_dir
[str] Charging processes sub-directory. Default None.

simbev_config_file
[str] Name of the simbev config file. Default “metadata_simbev_run.json”.

• allocate_charging_demand_kwds – These may contain any further at-
tributes you want to specify when calling the function that allocates charg-
ing processes from SimBEV to potential charging points from TracBEV using
distribute_charging_demand().

mode
[str] Distribution mode. If the mode is set to “user_friendly” only the simbev
weights are used for the distribution. If the mode is “grid_friendly” also grid con-
ditions are respected. Default “user_friendly”.

generators_weight_factor
[float] Weighting factor of the generators weight within an LV grid in comparison
to the loads weight. Default 0.5.

50 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.2.0

distance_weight
[float] Weighting factor for the distance between a potential charging park and its
nearest substation in comparison to the combination of the generators and load fac-
tors of the LV grids. Default 1 / 3.

user_friendly_weight
[float] Weighting factor of the user friendly weight in comparison to the grid friendly
weight. Default 0.5.

apply_charging_strategy(strategy='dumb', **kwargs)
Applies charging strategy to set EV charging time series at charging parks.

This function requires that standing times, charging demand, etc. at charging parks were previously set
using import_electromobility.

It is assumed that only ‘private’ charging processes at ‘home’ or at ‘work’ can be flexibilized. ‘public’
charging processes will always be ‘dumb’.

The charging time series at each charging parks are written to loads_active_power. Reactive power in
loads_reactive_power is set to 0 Mvar.

Parameters
• strategy (str) – Defines the charging strategy to apply. The following charging

strategies are valid:

– ’dumb’

The cars are charged directly after arrival with the maximum possible charging
capacity.

– ’reduced’

The cars are charged directly after arrival with the minimum possible charging
power. The minimum possible charging power is determined by the parking
time and the parameter minimum_charging_capacity_factor.

– ’residual’

The cars are charged when the residual load in the MV grid is lowest (high
generation and low consumption). Charging processes with a low flexibility
are given priority.

Default: ‘dumb’.

• timestamp_share_threshold (float) – Percental threshold of the time required
at a time step for charging the vehicle. If the time requirement is below this limit, then
the charging process is not mapped into the time series. If, however, it is above this
limit, the time step is mapped to 100% into the time series. This prevents differences
between the charging strategies and creates a compromise between the simultaneity of
charging processes and an artificial increase in the charging demand. Default: 0.2.

• minimum_charging_capacity_factor (float) – Technical minimum charging
power of charging points in p.u. used in case of charging strategy ‘reduced’.
E.g. for a charging point with a nominal capacity of 22 kW and a mini-
mum_charging_capacity_factor of 0.1 this would result in a minimum charging power
of 2.2 kW. Default: 0.1.

import_heat_pumps(scenario=None, **kwargs)
Gets heat pump capacities for specified scenario from oedb and integrates them into the grid.

Besides heat pump capacity the heat pump’s COP and heat demand to be served are as well retrieved.

1.8. API 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

Currently, the only supported data source is scenario data generated in the research project eGo^n. You
can choose between two scenarios: ‘eGon2035’ and ‘eGon100RE’.

The data is retrieved from the open energy platform.

ToDo Add information on scenarios and from which tables data is retrieved.

The following steps are conducted in this function:

• Spatially disaggregated data on heat pump capacities in individual and district heating are obtained
from the database for the specified scenario.

• Heat pumps are integrated into the grid (added to loads_df).

– Grid connection points of heat pumps for individual heating are determined based on the corre-
sponding building ID.

– Grid connection points of heat pumps for district heating are determined based on their geolo-
cation and installed capacity. See connect_to_mv and connect_to_lv for more information.

• COP and heat demand for each heat pump are retrieved from the database and stored in the HeatPump
class that can be accessed through heat_pump.

Be aware that this function does not yield electricity load time series for the heat pumps. The actual time
series are determined through applying an operation strategy or optimising heat pump dispatch.

After the heat pumps are integrated there may be grid issues due to the additional load. These are not
solved automatically. If you want to have a stable grid without grid issues you can invoke the automatic
grid expansion through the function reinforce.

Parameters
• scenario (str) – Scenario for which to retrieve heat pump data. Possible options are

‘eGon2035’ and ‘eGon100RE’.

• kwargs – See edisgo.io.heat_pump_import.oedb().

apply_heat_pump_operating_strategy(strategy='uncontrolled', heat_pump_names=None, **kwargs)
Applies operating strategy to set electrical load time series of heat pumps.

This function requires that COP and heat demand time series, and depending on the operating strategy
also information on thermal storage units, were previously set in heat_pump. COP and heat demand
information is automatically set when using import_heat_pumps. When not using this function it can
be manually set using set_cop and set_heat_demand .

The electrical load time series of each heat pump are written to loads_active_power. Reactive power
in loads_reactive_power is set to 0 Mvar.

Parameters
• strategy (str) – Defines the operating strategy to apply. The following strategies

are valid:

– ’uncontrolled’

The heat demand is directly served by the heat pump without buffering heat
using a thermal storage. The electrical load of the heat pump is determined as
follows:

𝑃𝑒𝑙 = 𝑃𝑡ℎ/𝐶𝑂𝑃

Default: ‘uncontrolled’.

52 Chapter 1. Contents

https://ego-n.org/
https://openenergy-platform.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• heat_pump_names (list(str) or None) – Defines for which heat pumps to apply
operating strategy. If None, all heat pumps for which COP information in heat_pump
is given are used. Default: None.

plot_mv_grid_topology(technologies=False, **kwargs)
Plots plain MV network topology and optionally nodes by technology type (e.g. station or generator).

For more information see edisgo.tools.plots.mv_grid_topology().

Parameters
technologies (bool) – If True plots stations, generators, etc. in the topology in different
colors. If False does not plot any nodes. Default: False.

plot_mv_voltages(**kwargs)
Plots voltages in MV network on network topology plot.

For more information see edisgo.tools.plots.mv_grid_topology().

plot_mv_line_loading(**kwargs)
Plots relative line loading (current from power flow analysis to allowed current) of MV lines.

For more information see edisgo.tools.plots.mv_grid_topology().

plot_mv_grid_expansion_costs(**kwargs)
Plots grid expansion costs per MV line.

For more information see edisgo.tools.plots.mv_grid_topology().

plot_mv_storage_integration(**kwargs)
Plots storage position in MV topology of integrated storage units.

For more information see edisgo.tools.plots.mv_grid_topology().

plot_mv_grid(**kwargs)
General plotting function giving all options of function edisgo.tools.plots.mv_grid_topology().

histogram_voltage(timestep=None, title=True, **kwargs)
Plots histogram of voltages.

For more information on the histogram plot and possible configurations see edisgo.tools.plots.
histogram().

Parameters
• timestep (pandas.Timestamp or list(pandas.Timestamp) or None, optional) – Spec-

ifies time steps histogram is plotted for. If timestep is None all time steps voltages are
calculated for are used. Default: None.

• title (str or bool, optional) – Title for plot. If True title is auto generated. If False
plot has no title. If str, the provided title is used. Default: True.

histogram_relative_line_load(timestep=None, title=True, voltage_level='mv_lv', **kwargs)
Plots histogram of relative line loads.

For more information on how the relative line load is calculated see edisgo.tools.tools.
get_line_loading_from_network(). For more information on the histogram plot and possible con-
figurations see edisgo.tools.plots.histogram().

Parameters
• timestep (pandas.Timestamp or list(pandas.Timestamp) or None, optional) – Speci-

fies time step(s) histogram is plotted for. If timestep is None all time steps currents are
calculated for are used. Default: None.

1.8. API 53

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html

eDisGo Documentation, Release 0.2.0

• title (str or bool, optional) – Title for plot. If True title is auto generated. If False
plot has no title. If str, the provided title is used. Default: True.

• voltage_level (str) – Specifies which voltage level to plot voltage histogram for.
Possible options are ‘mv’, ‘lv’ and ‘mv_lv’. ‘mv_lv’ is also the fallback option in case
of wrong input. Default: ‘mv_lv’

save(directory, save_topology=True, save_timeseries=True, save_results=True, save_electromobility=False,
save_heatpump=False, **kwargs)
Saves EDisGo object to csv files.

It can be chosen what is included in the csv export (e.g. power flow results, electromobility flexibility,
etc.). Further, in order to save disk storage space the data type of time series data can be reduced, e.g. to
float32 and data can be archived, e.g. in a zip archive.

Parameters
• directory (str) – Main directory to save EDisGo object to.

• save_topology (bool, optional) – Indicates whether to save Topology object.
Per default it is saved to sub-directory ‘topology’. See to_csv for more information.
Default: True.

• save_timeseries (bool, optional) – Indicates whether to save Timeseries ob-
ject. Per default it is saved to subdirectory ‘timeseries’. Through the keyword argu-
ments reduce_memory and to_type it can be chosen if memory should be reduced. See
to_csv for more information. Default: True.

• save_results (bool, optional) – Indicates whether to save Results object. Per
default it is saved to subdirectory ‘results’. Through the keyword argument parameters
the results that should be stored can be specified. Further, through the keyword param-
eters reduce_memory and to_type it can be chosen if memory should be reduced. See
to_csv for more information. Default: True.

• save_electromobility (bool, optional) – Indicates whether to save
Electromobility object. Per default it is not saved. If set to True, it is saved to
subdirectory ‘electromobility’. See to_csv for more information.

• save_heatpump (bool, optional) – Indicates whether to save HeatPump object.
Per default it is not saved. If set to True, it is saved to subdirectory ‘heat_pump’. See
to_csv for more information.

• reduce_memory (bool, optional) – If True, size of dataframes containing time
series in Results, TimeSeries and HeatPump is reduced. See respective classes
reduce_memory functions for more information. Type to convert to can be specified
by providing to_type as keyword argument. Further parameters of reduce_memory
functions cannot be passed here. Call these functions directly to make use of further
options. Default: False.

• to_type (str, optional) – Data type to convert time series data to. This is a trade-
off between precision and memory. Default: “float32”.

• parameters (None or dict) – Specifies which results to store. By default this is
set to None, in which case all available results are stored. To only store certain results
provide a dictionary. See function docstring parameters parameter in to_csv() for
more information.

• electromobility_attributes (None or list(str)) – Specifies which electro-
mobility attributes to store. By default this is set to None, in which case all attributes
are stored. See function docstring attributes parameter in to_csv for more informa-
tion.

54 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• archive (bool, optional) – Save disk storage capacity by archiving the csv files.
The archiving takes place after the generation of the CSVs and therefore temporarily
the storage needs are higher. Default: False.

• archive_type (str, optional) – Set archive type. Default: “zip”.

• drop_unarchived (bool, optional) – Drop the unarchived data if parameter
archive is set to True. Default: True.

save_edisgo_to_pickle(path='', filename=None)
Saves EDisGo object to pickle file.

Parameters
• path (str) – Directory the pickle file is saved to. Per default it takes the current

working directory.

• filename (str or None) – Filename the pickle file is saved under. If None, filename
is ‘edisgo_object_{grid_id}.pkl’.

reduce_memory(**kwargs)
Reduces size of dataframes containing time series to save memory.

Per default, float data is stored as float64. As this precision is barely needed, this function can be used to
convert time series data to a data subtype with less memory usage, such as float32.

Parameters
• to_type (str, optional) – Data type to convert time series data to. This is a trade-

off between precision and memory. Default: “float32”.

• results_attr_to_reduce (list(str), optional) – See attr_to_reduce param-
eter in reduce_memory for more information.

• timeseries_attr_to_reduce (list(str), optional) – See attr_to_reduce pa-
rameter in reduce_memory for more information.

check_integrity()

Method to check the integrity of the EDisGo object.

Checks for consistency of topology (see edisgo.topology.check_integrity()), timeseries (see
edisgo.timeseries.check_integrity()) and the interplay of both.

resample_timeseries(method='ffill', freq='15min')
Resamples all generator, load and storage time series to a desired resolution.

The following time series are affected by this:

• generators_active_power

• loads_active_power

• storage_units_active_power

• generators_reactive_power

• loads_reactive_power

• storage_units_reactive_power

Both up- and down-sampling methods are possible.

Parameters
• method (str, optional) – Method to choose from to fill missing values when re-

sampling. Possible options are:

1.8. API 55

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

– ’ffill’
Propagate last valid observation forward to next valid observation. See pan-
das.DataFrame.ffill.

– ’bfill’
Use next valid observation to fill gap. See pandas.DataFrame.bfill.

– ’interpolate’
Fill NaN values using an interpolation method. See pan-
das.DataFrame.interpolate.

Default: ‘ffill’.

• freq (str, optional) – Frequency that time series is resampled to. Offset
aliases can be found here: https://pandas.pydata.org/pandas-docs/stable/user_guide/
timeseries.html#offset-aliases. Default: ‘15min’.

1.8.2 edisgo.network package

edisgo.network.components module

class edisgo.network.components.BasicComponent(**kwargs)
Bases: ABC

Generic component

Can be initialized with EDisGo object or Topology object. In case of Topology object component time series
attributes currently will raise an error.

property id

Unique identifier of component as used in component dataframes in Topology.

Returns
Unique identifier of component.

Return type
str

property edisgo_obj

EDisGo container

Return type
EDisGo

property topology

Network topology container

Return type
Topology

property voltage_level

Voltage level the component is connected to (‘mv’ or ‘lv’).

Returns
Voltage level. Returns ‘lv’ if component connected to the low voltage and ‘mv’ if compo-
nent is connected to the medium voltage.

Return type
str

56 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ffill.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ffill.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.bfill.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html
https://docs.python.org/3/library/stdtypes.html#str
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

abstract property grid

Grid component is in.

Returns
Grid component is in.

Return type
Grid

class edisgo.network.components.Component(**kwargs)
Bases: BasicComponent

Generic component for all components that can be considered nodes, e.g. generators and loads.

property bus

Bus component is connected to.

Parameters
bus (str) – ID of bus to connect component to.

Returns
Bus component is connected to.

Return type
str

property grid

Grid the component is in.

Returns
Grid object the component is in.

Return type
Grid

property geom

Geo location of component.

Return type
shapely.Point

class edisgo.network.components.Load(**kwargs)
Bases: Component

Load object

property p_set

Peak load in MW.

Parameters
p_set (float) – Peak load in MW.

Returns
Peak load in MW.

Return type
float

property annual_consumption

Annual consumption of load in MWh.

Parameters
annual_consumption (float) – Annual consumption in MWh.

1.8. API 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://shapely.readthedocs.io/en/latest/manual.html#Point
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

Returns
Annual consumption of load in MWh.

Return type
float

property sector

Sector load is associated with.

The sector is e.g. used to assign load time series to a load using the demandlib. The following four sectors
are considered: ‘agricultural’, ‘retail’, ‘residential’, ‘industrial’.

Parameters
sector (str) –

Returns
• str – Load sector

• #ToDo (Maybe return ‘not specified’ in case sector is None?)

property active_power_timeseries

Active power time series of load in MW.

Returns
Active power time series of load in MW.

Return type
pandas.Series

property reactive_power_timeseries

Reactive power time series of load in Mvar.

Returns
Reactive power time series of load in Mvar.

Return type
pandas.Series

class edisgo.network.components.Generator(**kwargs)
Bases: Component

Generator object

property nominal_power

Nominal power of generator in MW.

Parameters
nominal_power (float) – Nominal power of generator in MW.

Returns
Nominal power of generator in MW.

Return type
float

property type

Technology type of generator (e.g. ‘solar’).

Parameters
type (str) –

Returns

58 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• str – Technology type

• #ToDo (Maybe return ‘not specified’ in case type is None?)

property subtype

Technology subtype of generator (e.g. ‘solar_roof_mounted’).

Parameters
subtype (str) –

Returns
• str – Technology subtype

• #ToDo (Maybe return ‘not specified’ in case subtype is None?)

property active_power_timeseries

Active power time series of generator in MW.

Returns
Active power time series of generator in MW.

Return type
pandas.Series

property reactive_power_timeseries

Reactive power time series of generator in Mvar.

Returns
Reactive power time series of generator in Mvar.

Return type
pandas.Series

property weather_cell_id

Weather cell ID of generator.

The weather cell ID is only used to obtain generator feed-in time series for solar and wind generators.

Parameters
weather_cell_id (int) – Weather cell ID of generator.

Returns
Weather cell ID of generator.

Return type
int

class edisgo.network.components.Storage(**kwargs)
Bases: Component

Storage object

property nominal_power

Nominal power of storage unit in MW.

Parameters
nominal_power (float) – Nominal power of storage unit in MW.

Returns
Nominal power of storage unit in MW.

Return type
float

1.8. API 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

property active_power_timeseries

Active power time series of storage unit in MW.

Returns
Active power time series of storage unit in MW.

Return type
pandas.Series

property reactive_power_timeseries

Reactive power time series of storage unit in Mvar.

Returns
Reactive power time series of storage unit in Mvar.

Return type
pandas.Series

class edisgo.network.components.Switch(**kwargs)
Bases: BasicComponent

Switch object

Switches are for example medium voltage disconnecting points (points where MV rings are split under normal
operation conditions). They are represented as branches and can have two states: ‘open’ or ‘closed’. When the
switch is open the branch it is represented by connects some bus and the bus specified in bus_open. When it is
closed bus bus_open is substitued by the bus specified in bus_closed.

property type

Type of switch.

So far edisgo only considers switch disconnectors.

Parameters
type (str) – Type of switch.

Returns
Type of switch.

Return type
str

property bus_open

Bus ID of bus the switch is ‘connected’ to when state is ‘open’.

As switches are represented as branches they connect two buses. bus_open specifies the bus the branch is
connected to in the open state.

Returns
Bus in ‘open’ state.

Return type
str

property bus_closed

Bus ID of bus the switch is ‘connected’ to when state is ‘closed’.

As switches are represented as branches they connect two buses. bus_closed specifies the bus the branch
is connected to in the closed state.

Returns
Bus in ‘closed’ state.

60 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Return type
str

property state

State of switch (open or closed).

Returns
State of switch: ‘open’ or ‘closed’.

Return type
str

property branch

Branch the switch is represented by.

Returns
Branch the switch is represented by.

Return type
str

property grid

Grid switch is in.

Returns
Grid switch is in.

Return type
Grid

open()

Open switch.

close()

Close switch.

class edisgo.network.components.PotentialChargingParks(**kwargs)
Bases: BasicComponent

property voltage_level

Voltage level the component is connected to (‘mv’ or ‘lv’).

Returns
Voltage level. Returns ‘lv’ if component connected to the low voltage and ‘mv’ if compo-
nent is connected to the medium voltage.

Return type
str

property grid

Grid component is in.

Returns
Grid component is in.

Return type
Grid

property ags

8-digit AGS (Amtlicher Gemeindeschlüssel, eng. Community Identification Number) number the potential
charging park is in. Number is given as int and leading zeros are therefore missing.

1.8. API 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

eDisGo Documentation, Release 0.2.0

Returns
AGS number

Return type
int

property use_case

Charging use case (home, work, public or hpc) of the potential charging park.

Returns
Charging use case

Return type
str

property designated_charging_point_capacity

Total gross designated charging park capacity.

This is not necessarily equal to the connection rating.

Returns
Total gross designated charging park capacity

Return type
float

property user_centric_weight

User centric weight of the potential charging park determined by SimBEV.

Returns
User centric weight

Return type
float

property geometry

Location of the potential charging park as Shapely Point object.

Returns
Location of the potential charging park.

Return type
Shapely Point object.

property nearest_substation

Determines the nearest LV Grid, substation and distance.

Returns
int

LV Grid ID

str
ID of the nearest substation

float
Distance to nearest substation

Return type
dict

property edisgo_id

62 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://github.com/rl-institut/simbev
https://docs.python.org/3/library/functions.html#float
https://shapely.readthedocs.io/en/latest/manual.html#points
https://shapely.readthedocs.io/en/latest/manual.html#points
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.2.0

property charging_processes_df

Determines designated charging processes for the potential charging park.

Returns
DataFrame with AGS, car ID, trip destination, charging use case (private or public), netto
charging capacity, charging demand, charge start, charge end, potential charging park ID
and charging point ID.

Return type
pandas.DataFrame

property grid_connection_capacity

property within_grid

Determines if the potential charging park is located within the grid district.

edisgo.network.electromobility module

class edisgo.network.electromobility.Electromobility(**kwargs)
Bases: object

Data container for all electromobility data.

This class holds data on charging processes (how long cars are parking at a charging station, how much they need
to charge, etc.) necessary to apply different charging strategies, as well as information on potential charging sites
and integrated charging parks.

property charging_processes_df

DataFrame with all SimBEV charging processes.

Returns
DataFrame with AGS, car ID, trip destination, charging use case, netto charging capacity,
charging demand, charge start, charge end, grid connection point and charging point ID.
The columns are:

ags
[int] 8-digit AGS (Amtlicher Gemeindeschlüssel, eng. Community Identifica-
tion Number). Leading zeros are missing.

car_id
[int] Car ID to differentiate charging processes from different cars.

destination
[str] SimBEV driving destination.

use_case
[str] SimBEV use case. Can be “hpc”, “home”, “public” or “work”.

nominal_charging_capacity_kW
[float] Vehicle charging capacity in kW.

grid_charging_capacity_kW
[float] Grid-sided charging capacity including charging infrastructure losses in
kW.

chargingdemand_kWh
[float] Charging demand in kWh.

park_time_timesteps
[int] Number of parking time steps.

1.8. API 63

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/functions.html#object
https://github.com/rl-institut/simbev

eDisGo Documentation, Release 0.2.0

park_start_timesteps
[int] Time step the parking event starts.

park_end_timesteps
[int] Time step the parking event ends.

charging_park_id
[int] Designated charging park ID from potential_charging_parks_gdf. Is NaN
if the charging demand is not yet distributed.

charging_point_id
[int] Designated charging point ID. Is used to differentiate between multiple
charging points at one charging park.

Return type
pandas.DataFrame

property potential_charging_parks_gdf

GeoDataFrame with all TracBEV potential charging parks.

Returns
GeoDataFrame with ID as index, AGS, charging use case (home, work, public or hpc),
user centric weight and geometry. Columns are:

index
[int] Charging park ID.

use_case
[str] TracBEV use case. Can be “hpc”, “home”, “public” or “work”.

user_centric_weight
[flaot] User centric weight used in distribution of charging demand. Weight is
determined by TracBEV but normalized from 0 .. 1.

geometry
[GeoSeries] Geolocation of charging parks.

Return type
geopandas.GeoDataFrame

property potential_charging_parks

Potential charging parks within the AGS.

Returns
List of potential charging parks within the AGS.

Return type
list(PotentialChargingParks)

property simbev_config_df

Dict with all SimBEV config data.

Returns
DataFrame with used regio type, charging point efficiency, stepsize in minutes, start date,
end date, minimum SoC for hpc, grid timeseries setting, grid timeseries by use case setting
and the number of simulated days. Columns are:

regio_type
[str] RegioStaR 7 ID used in SimBEV.

64 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/rl-institut/tracbev
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://github.com/rl-institut/simbev

eDisGo Documentation, Release 0.2.0

eta_cp
[float or int] Charging point efficiency used in SimBEV.

stepsize
[int] Stepsize in minutes the driving profile is simulated for in SimBEV.

start_date
[datetime64] Start date of the SimBEV simulation.

end_date
[datetime64] End date of the SimBEV simulation.

soc_min
[float] Minimum SoC when a HPC event is initialized in SimBEV.

grid_timeseries
[bool] Setting whether a grid timeseries is generated within the SimBEV sim-
ulation.

grid_timeseries_by_usecase
[bool] Setting whether a grid timeseries by use case is generated within the
SimBEV simulation.

days
[int] Timedelta between the end_date and start_date in days.

Return type
pandas.DataFrame

property integrated_charging_parks_df

Mapping DataFrame to map the charging park ID to the internal eDisGo ID.

The eDisGo ID is determined when integrating components using add_component() or
integrate_component_based_on_geolocation() method.

Returns
Mapping DataFrame to map the charging park ID to the internal eDisGo ID.

Return type
pandas.DataFrame

property stepsize

Stepsize in minutes used in SimBEV.

Returns
Stepsize in minutes

Return type
int

property simulated_days

Number of simulated days in SimBEV.

Returns
Number of simulated days

Return type
int

property eta_charging_points

Charging point efficiency.

1.8. API 65

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/rl-institut/simbev
https://docs.python.org/3/library/functions.html#int
https://github.com/rl-institut/simbev
https://docs.python.org/3/library/functions.html#int

eDisGo Documentation, Release 0.2.0

Returns
Charging point efficiency in p.u..

Return type
float

property flexibility_bands

Dictionary with flexibility bands (lower and upper energy band as well as upper power band).

Parameters
flex_dict (dict(str, pandas.DataFrame)) – Keys are ‘upper_power’, ‘lower_energy’ and
‘upper_energy’. Values are dataframes containing the corresponding band per each charg-
ing point. Columns of the dataframe are the charging point names as in loads_df . Index
is a time index.

Returns
See input parameter flex_dict for more information on the dictionary.

Return type
dict(str, pandas.DataFrame)

get_flexibility_bands(edisgo_obj, use_case)
Method to determine flexibility bands (lower and upper energy band as well as upper power band).

Besides being returned by this function, flexibility bands are written to flexibility_bands.

Parameters
• edisgo_obj (EDisGo) –

• use_case (str or list(str)) – Charging point use case(s) to determine flexibility
bands for.

Returns
Keys are ‘upper_power’, ‘lower_energy’ and ‘upper_energy’. Values are dataframes con-
taining the corresponding band for each charging point of the specified use case. Columns
of the dataframe are the charging point names as in loads_df . Index is a time index.

Return type
dict(str, pandas.DataFrame)

to_csv(directory, attributes=None)
Exports electromobility data to csv files.

The following attributes can be exported:

• ‘charging_processes_df’ : Attribute charging_processes_df is saved to charging_processes.csv.

• ‘potential_charging_parks_gdf’ : Attribute potential_charging_parks_gdf is saved to poten-
tial_charging_parks.csv.

• ‘integrated_charging_parks_df’ : Attribute integrated_charging_parks_df is saved to inte-
grated_charging_parks.csv.

• ‘simbev_config_df’ : Attribute simbev_config_df is saved to simbev_config.csv.

• ‘flexibility_bands’ : The three flexibility bands in attribute flexibility_bands are
saved to flexibility_band_upper_power.csv, flexibility_band_lower_energy.csv, and flexibil-
ity_band_upper_energy.csv.

Parameters
• directory (str) – Path to save electromobility data to.

66 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• attributes (list(str) or None) – List of attributes to export. See above for
attributes that can be exported. If None, all specified attributes are exported. Default:
None.

from_csv(data_path, edisgo_obj, from_zip_archive=False)
Restores electromobility from csv files.

Parameters
• data_path (str) – Path to electromobility csv files.

• edisgo_obj (EDisGo) –

• from_zip_archive (bool, optional) – Set True if data is archived in a zip
archive. Default: False

edisgo.network.grids module

class edisgo.network.grids.Grid(**kwargs)
Bases: ABC

Defines a basic grid in eDisGo.

Parameters
• edisgo_obj (EDisGo) –

• id (str or int, optional) – Identifier

property id

ID of the grid.

property edisgo_obj

EDisGo object the grid is stored in.

property nominal_voltage

Nominal voltage of network in kV.

Parameters
nominal_voltage (float) –

Returns
Nominal voltage of network in kV.

Return type
float

property graph

Graph representation of the grid.

Returns
Graph representation of the grid as networkx Ordered Graph, where lines are represented
by edges in the graph, and buses and transformers are represented by nodes.

Return type
networkx.Graph

1.8. API 67

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://networkx.github.io/documentation/stable/reference/classes/graph.html#network.Graph

eDisGo Documentation, Release 0.2.0

property geopandas

Returns components as geopandas.GeoDataFrames

Returns container with geopandas.GeoDataFrames containing all georeferenced components within the
grid.

Returns
Data container with GeoDataFrames containing all georeferenced components within the
grid(s).

Return type
GeoPandasGridContainer or list(GeoPandasGridContainer)

property station

DataFrame with form of buses_df with only grid’s station’s secondary side bus information.

property generators_df

Connected generators within the network.

Returns
Dataframe with all generators in topology. For more information on the dataframe see
generators_df .

Return type
pandas.DataFrame

property generators

Connected generators within the network.

Returns
List of generators within the network.

Return type
list(Generator)

property loads_df

Connected loads within the network.

Returns
Dataframe with all loads in topology. For more information on the dataframe see
loads_df .

Return type
pandas.DataFrame

property loads

Connected loads within the network.

Returns
List of loads within the network.

Return type
list(Load)

property storage_units_df

Connected storage units within the network.

Returns
Dataframe with all storage units in topology. For more information on the dataframe see
storage_units_df .

68 Chapter 1. Contents

https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Return type
pandas.DataFrame

property charging_points_df

Connected charging points within the network.

Returns
Dataframe with all charging points in topology. For more information on the dataframe
see loads_df .

Return type
pandas.DataFrame

property switch_disconnectors_df

Switch disconnectors in network.

Switch disconnectors are points where rings are split under normal operating conditions.

Returns
Dataframe with all switch disconnectors in network. For more information on the
dataframe see switches_df .

Return type
pandas.DataFrame

property switch_disconnectors

Switch disconnectors within the network.

Returns
List of switch disconnectory within the network.

Return type
list(Switch)

property lines_df

Lines within the network.

Returns
Dataframe with all buses in topology. For more information on the dataframe see
lines_df .

Return type
pandas.DataFrame

abstract property buses_df

Buses within the network.

Returns
Dataframe with all buses in topology. For more information on the dataframe see
buses_df .

Return type
pandas.DataFrame

property weather_cells

Weather cells in network.

Returns
List of weather cell IDs in network.

Return type
list(int)

1.8. API 69

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

eDisGo Documentation, Release 0.2.0

property peak_generation_capacity

Cumulative peak generation capacity of generators in the network in MW.

Returns
Cumulative peak generation capacity of generators in the network in MW.

Return type
float

property peak_generation_capacity_per_technology

Cumulative peak generation capacity of generators in the network per technology type in MW.

Returns
Cumulative peak generation capacity of generators in the network per technology type in
MW.

Return type
pandas.DataFrame

property p_set

Cumulative peak load of loads in the network in MW.

Returns
Cumulative peak load of loads in the network in MW.

Return type
float

property p_set_per_sector

Cumulative peak load of loads in the network per sector in MW.

Returns
Cumulative peak load of loads in the network per sector in MW.

Return type
pandas.DataFrame

class edisgo.network.grids.MVGrid(**kwargs)
Bases: Grid

Defines a medium voltage network in eDisGo.

property lv_grids

Yields generator object with all underlying low voltage grids.

Returns
Yields generator object with LVGrid object.

Return type
LVGrid

property buses_df

Buses within the network.

Returns
Dataframe with all buses in topology. For more information on the dataframe see
buses_df .

Return type
pandas.DataFrame

70 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

property transformers_df

Transformers to overlaying network.

Returns
Dataframe with all transformers to overlaying network. For more information on the
dataframe see transformers_df .

Return type
pandas.DataFrame

draw()

Draw MV network.

class edisgo.network.grids.LVGrid(**kwargs)
Bases: Grid

Defines a low voltage network in eDisGo.

property buses_df

Buses within the network.

Returns
Dataframe with all buses in topology. For more information on the dataframe see
buses_df .

Return type
pandas.DataFrame

property transformers_df

Transformers to overlaying network.

Returns
Dataframe with all transformers to overlaying network. For more information on the
dataframe see transformers_df .

Return type
pandas.DataFrame

draw(node_color='black', edge_color='black', colorbar=False, labels=False, filename=None)
Draw LV network.

Currently, edge width is proportional to nominal apparent power of the line and node size is proportional
to peak load of connected loads.

Parameters
• node_color (str or pandas.Series) – Color of the nodes (buses) of the grid. If provided

as string all nodes will have that color. If provided as series, the index of the series must
contain all buses in the LV grid and the corresponding values must be float values, that
will be translated to the node color using a colormap, currently set to “Blues”. Default:
“black”.

• edge_color (str or pandas.Series) – Color of the edges (lines) of the grid. If provided
as string all edges will have that color. If provided as series, the index of the series
must contain all lines in the LV grid and the corresponding values must be float values,
that will be translated to the edge color using a colormap, currently set to “inferno_r”.
Default: “black”.

• colorbar (bool) – If True, a colorbar is added to the plot for node and edge colors,
in case these are sequences. Default: False.

1.8. API 71

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/functions.html#bool

eDisGo Documentation, Release 0.2.0

• labels (bool) – If True, displays bus names. As bus names are quite long, this is
currently not very pretty. Default: False.

• filename (str or None) – If a filename is provided, the plot is saved under that
name but not displayed. If no filename is provided, the plot is only displayed. Default:
None.

property geopandas

Remove this as soon as LVGrids are georeferenced

Type
TODO

edisgo.network.heat module

class edisgo.network.heat.HeatPump(**kwargs)
Bases: object

Data container for all heat pump data.

This class holds data on heat pump COP, heat demand time series, thermal storage data. . .

property cop_df

DataFrame with COP time series of heat pumps.

Parameters
df (pandas.DataFrame) – DataFrame with COP time series of heat pumps in p.u.. Index
of the dataframe is a time index and should contain all time steps given in timeindex.
Column names are names of heat pumps as in loads_df .

Returns
DataFrame with COP time series of heat pumps in p.u.. For more information on the
dataframe see input parameter df.

Return type
pandas.DataFrame

property heat_demand_df

DataFrame with heat demand time series of heat pumps.

Parameters
df (pandas.DataFrame) – DataFrame with heat demand time series of heat pumps in
MW. Index of the dataframe is a time index and should contain all time steps given in
timeindex. Column names are names of heat pumps as in loads_df .

Returns
DataFrame with heat demand time series of heat pumps in MW. For more information on
the dataframe see input parameter df.

Return type
pandas.DataFrame

property thermal_storage_units_df

DataFrame with heat pump’s thermal storage information.

Parameters
df (pandas.DataFrame) – DataFrame with thermal storage information. Index of the
dataframe are names of heat pumps as in loads_df . Columns of the dataframe are:

72 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

capacity
[float] Thermal storage capacity in MWh.

efficiency
[float] Charging and discharging efficiency in p.u..

state_of_charge_initial
[float] Initial state of charge in MWh.

Returns
DataFrame with thermal storage information. For more information on the dataframe see
input parameter df.

Return type
pandas.DataFrame

property building_ids_df

DataFrame with buildings served by each heat pump.

Parameters
df (pandas.DataFrame) – DataFrame with building IDs of buildings served by each heat
pump. Index of the dataframe are names of heat pumps as in loads_df . Columns of the
dataframe are:

building_ids
[list(int)] List of building IDs.

Returns
DataFrame with building IDs of buildings served by each heat pump. For more information
on the dataframe see input parameter df.

Return type
pandas.DataFrame

set_cop(edisgo_object, ts_cop, heat_pump_names=None)
Get COP time series for heat pumps.

Heat pumps need to already be integrated into the grid.

Parameters
• edisgo_object (EDisGo) –

• ts_cop (str or pandas.DataFrame) – Defines option used to set COP time series. Pos-
sible options are:

– ’oedb’

Not yet implemented! Weather cell specific hourly COP time series are ob-
tained from the OpenEnergy DataBase for the weather year 2011. See edisgo.
io.timeseries_import.cop_oedb() for more information. Using infor-
mation on which weather cell each heat pump is in, the weather cell specific
time series are mapped to each heat pump.

– pandas.DataFrame

DataFrame with self-provided COP time series per heat pump. See cop_df
on information on the required dataframe format.

• heat_pump_names (list(str) or None) – Defines for which heat pumps to get
COP time series for in case ts_cop is ‘oedb’. If None, all heat pumps in loads_df
(type is ‘heat_pump’) are used. Default: None.

1.8. API 73

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
https://openenergy-platform.org/dataedit/schemas
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

set_heat_demand(edisgo_object, ts_heat_demand, heat_pump_names=None)
Get heat demand time series for buildings with heat pumps.

Heat pumps need to already be integrated into the grid.

Parameters
• edisgo_object (EDisGo) –

• ts_heat_demand (str or pandas.DataFrame) – Defines option used to set heat demand
time series. Possible options are:

– ’oedb’

Not yet implemented! Heat demand time series are obtained from the
OpenEnergy DataBase for the weather year 2011. See edisgo.io.
timeseries_import.heat_demand_oedb() for more information.

– pandas.DataFrame

DataFrame with self-provided heat demand time series per heat pump. See
heat_demand_df on information on the required dataframe format.

• heat_pump_names (list(str) or None) – Defines for which heat pumps to get
heat demand time series for in case ts_heat_demand is ‘oedb’. If None, all heat pumps
in loads_df (type is ‘heat_pump’) are used. Default: None.

reduce_memory(attr_to_reduce=None, to_type='float32')
Reduces size of dataframes to save memory.

See reduce_memory for more information.

Parameters
• attr_to_reduce (list(str), optional) – List of attributes to reduce size for.

Per default, the following attributes are reduced if they exist: cop_df, heat_demand_df.

• to_type (str, optional) – Data type to convert time series data to. This is a trade-
off between precision and memory. Default: “float32”.

to_csv(directory, reduce_memory=False, **kwargs)
Exports heat pump data to csv files.

The following attributes are exported:

• ‘cop_df’

Attribute cop_df is saved to cop.csv.

• ‘heat_demand_df’

Attribute heat_demand_df is saved to heat_demand.csv.

• ‘thermal_storage_units_df’

Attribute thermal_storage_units_df is saved to thermal_storage_units.csv.

• ‘building_ids_df’

Attribute building_ids_df is saved to building_ids.csv.

Parameters
• directory (str) – Path to save data to.

74 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
https://openenergy-platform.org/dataedit/schemas
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• reduce_memory (bool, optional) – If True, size of dataframes is reduced using
reduce_memory. Optional parameters of reduce_memory can be passed as kwargs
to this function. Default: False.

• kwargs – Kwargs may contain arguments of reduce_memory.

from_csv(data_path, from_zip_archive=False)
Restores heat pump data from csv files.

Parameters
• data_path (str) – Path to heat pump csv files.

• from_zip_archive (bool, optional) – Set True if data is archived in a zip
archive. Default: False

edisgo.network.results module

class edisgo.network.results.Results(edisgo_object)
Bases: object

Power flow analysis results management

Includes raw power flow analysis results, history of measures to increase the network’s hosting capacity and
information about changes of equipment.

edisgo_object

Type
EDisGo

property measures

List with measures conducted to increase network’s hosting capacity.

Parameters
measure (str) – Measure to increase network’s hosting capacity. Possible options so far
are ‘grid_expansion’, ‘storage_integration’, ‘curtailment’.

Returns
A stack that details the history of measures to increase network’s hosting capacity. The
last item refers to the latest measure. The key original refers to the state of the network
topology as it was initially imported.

Return type
list

property pfa_p

Active power over components in MW from last power flow analysis.

The given active power for each line / transformer is the active power at the line ending / transformer side
with the higher apparent power determined from active powers 𝑝0 and 𝑝1 and reactive powers 𝑞0 and 𝑞0 at
the line endings / transformer sides:

𝑆 = 𝑚𝑎𝑥(
√︁

𝑝20 + 𝑞20 ,
√︁
𝑝21 + 𝑞21)

Parameters
df (pandas.DataFrame) – Results for active power over lines and transformers in MW from
last power flow analysis. Index of the dataframe is a pandas.DatetimeIndex indicating the

1.8. API 75

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html

eDisGo Documentation, Release 0.2.0

time period the power flow analysis was conducted for; columns of the dataframe are the
representatives of the lines and stations included in the power flow analysis.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Results for active power over lines and transformers in MW from last power flow analysis.
For more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

property pfa_q

Active power over components in Mvar from last power flow analysis.

The given reactive power over each line / transformer is the reactive power at the line ending / transformer
side with the higher apparent power determined from active powers 𝑝0 and 𝑝1 and reactive powers 𝑞0 and
𝑞1 at the line endings / transformer sides:

𝑆 = 𝑚𝑎𝑥(
√︁
𝑝20 + 𝑞20 ,

√︁
𝑝21 + 𝑞21)

Parameters
df (pandas.DataFrame) – Results for reactive power over lines and transformers in Mvar
from last power flow analysis. Index of the dataframe is a pandas.DatetimeIndex indicating
the time period the power flow analysis was conducted for; columns of the dataframe are
the representatives of the lines and stations included in the power flow analysis.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Results for reactive power over lines and transformers in Mvar from last power flow anal-
ysis. For more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

property v_res

Voltages at buses in p.u. from last power flow analysis.

Parameters
df (pandas.DataFrame) – Dataframe with voltages at buses in p.u. from last power flow
analysis. Index of the dataframe is a pandas.DatetimeIndex indicating the time steps the
power flow analysis was conducted for; columns of the dataframe are the bus names of all
buses in the analyzed grids.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Dataframe with voltages at buses in p.u. from last power flow analysis. For more informa-
tion on the dataframe see input parameter df.

Return type
pandas.DataFrame

property i_res

Current over components in kA from last power flow analysis.

Parameters
df (pandas.DataFrame) – Results for currents over lines and transformers in kA from last
power flow analysis. Index of the dataframe is a pandas.DatetimeIndex indicating the time

76 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html

eDisGo Documentation, Release 0.2.0

steps the power flow analysis was conducted for; columns of the dataframe are the repre-
sentatives of the lines and stations included in the power flow analysis.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Results for current over lines and transformers in kA from last power flow analysis. For
more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

property s_res

Apparent power over components in MVA from last power flow analysis.

The given apparent power over each line / transformer is the apparent power at the line ending / transformer
side with the higher apparent power determined from active powers 𝑝0 and 𝑝1 and reactive powers 𝑞0 and
𝑞1 at the line endings / transformer sides:

𝑆 = 𝑚𝑎𝑥(
√︁
𝑝20 + 𝑞20 ,

√︁
𝑝21 + 𝑞21)

Returns
Apparent power in MVA over lines and transformers. Index of the dataframe is a pan-
das.DatetimeIndex indicating the time steps the power flow analysis was conducted for;
columns of the dataframe are the representatives of the lines and stations included in the
power flow analysis.

Return type
pandas.DataFrame

property equipment_changes

Tracks changes to the grid topology.

When the grid is reinforced using reinforce or new generators added using import_generators, new
lines and/or transformers are added, lines split, etc. This is tracked in this attribute.

Parameters
df (pandas.DataFrame) – Dataframe holding information on added, changed and removed
lines and transformers. Index of the dataframe is in case of lines the name of the line, and in
case of transformers the name of the grid the station is in (in case of MV/LV transformers
the name of the LV grid and in case of HV/MV transformers the name of the MV grid).
Columns are the following:

equipment
[str] Type of new line or transformer as in equipment_data.

change
[str] Specifies if something was added, changed or removed.

iteration_step
[int] Grid reinforcement iteration step the change was conducted in. For changes con-
ducted during grid integration of new generators the iteration step is set to 0.

quantity
[int] Number of components added or removed. Only relevant for calculation of net-
work expansion costs to keep track of how many new standard lines were added.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Dataframe holding information on added, changed and removed lines and transformers.
For more information on the dataframe see input parameter df.

1.8. API 77

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Return type
pandas.DataFrame

property grid_expansion_costs

Costs per expanded component in kEUR.

Parameters
df (pandas.DataFrame) – Costs per expanded line and transformer in kEUR. Index of the
dataframe is the name of the expanded component as string. Columns are the following:

type
[str] Type of new line or transformer as in equipment_data.

total_costs
[float] Costs of equipment in kEUR. For lines the line length and number of parallel
lines is already included in the total costs.

quantity
[int] For transformers quantity is always one, for lines it specifies the number of parallel
lines.

length
[float] Length of line or in case of parallel lines all lines in km.

voltage_level
[str] Specifies voltage level the equipment is in (‘lv’, ‘mv’ or ‘mv/lv’).

Provide this if you want to set grid expansion costs. For retrieval of costs do not pass an
argument.

Returns
Costs per expanded line and transformer in kEUR. For more information on the dataframe
see input parameter df.

Return type
pandas.DataFrame

Notes

Network expansion measures are tracked in equipment_changes. Resulting costs are calcu-
lated using grid_expansion_costs(). Total network expansion costs can be obtained through
grid_expansion_costs.total_costs.sum().

property grid_losses

Active and reactive network losses in MW and Mvar, respectively.

Parameters
df (pandas.DataFrame) – Results for active and reactive network losses in columns ‘p’ and
‘q’ and in MW and Mvar, respectively. Index is a pandas.DatetimeIndex.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Results for active and reactive network losses MW and Mvar, respectively. For more in-
formation on the dataframe see input parameter df.

Return type
pandas.DataFrame

78 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Notes

Grid losses are calculated as follows:

𝑃𝑙𝑜𝑠𝑠 = |
∑︁

𝑖𝑛𝑓𝑒𝑒𝑑−
∑︁

𝑙𝑜𝑎𝑑 + 𝑃𝑠𝑙𝑎𝑐𝑘|

𝑄𝑙𝑜𝑠𝑠 = |
∑︁

𝑖𝑛𝑓𝑒𝑒𝑑−
∑︁

𝑙𝑜𝑎𝑑 + 𝑄𝑠𝑙𝑎𝑐𝑘|

As the slack is placed at the station’s secondary side (if MV is included, it’s positioned at the HV/MV
station’s secondary side and if a single LV grid is analysed it’s positioned at the LV station’s secondary
side) losses do not include losses over the respective station’s transformers.

property pfa_slack

Active and reactive power from slack in MW and Mvar, respectively.

In case the MV level is included in the power flow analysis, the slack is placed at the secondary side of the
HV/MV station and gives the energy transferred to and taken from the HV network. In case a single LV
network is analysed, the slack is positioned at the respective station’s secondary, in which case this gives
the energy transferred to and taken from the overlying MV network.

Parameters
df (pandas.DataFrame) – Results for active and reactive power from the slack in MW and
Mvar, respectively. Dataframe has the columns ‘p’, holding the active power results, and
‘q’, holding the reactive power results. Index is a pandas.DatetimeIndex.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Results for active and reactive power from the slack in MW and Mvar, respectively. For
more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

property pfa_v_mag_pu_seed

Voltages in p.u. from previous power flow analyses to be used as seed.

See set_seed() for more information.

Parameters
df (pandas.DataFrame) – Voltages at buses in p.u. from previous power flow analyses
including the MV level. Index of the dataframe is a pandas.DatetimeIndex indicating the
time steps previous power flow analyses were conducted for; columns of the dataframe are
the representatives of the buses included in the power flow analyses.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Voltages at buses in p.u. from previous power flow analyses to be opionally used as seed in
following power flow analyses. For more information on the dataframe see input parameter
df.

Return type
pandas.DataFrame

property pfa_v_ang_seed

Voltages in p.u. from previous power flow analyses to be used as seed.

See set_seed() for more information.

1.8. API 79

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Parameters
df (pandas.DataFrame) – Voltage angles at buses in radians from previous power flow
analyses including the MV level. Index of the dataframe is a pandas.DatetimeIndex in-
dicating the time steps previous power flow analyses were conducted for; columns of the
dataframe are the representatives of the buses included in the power flow analyses.

Provide this if you want to set values. For retrieval of data do not pass an argument.

Returns
Voltage angles at buses in radians from previous power flow analyses to be opionally used
as seed in following power flow analyses. For more information on the dataframe see input
parameter df.

Return type
pandas.DataFrame

property unresolved_issues

Lines and buses with remaining grid issues after network reinforcement.

In case overloading or voltage issues could not be solved after maximum number of iterations, network
reinforcement is not aborted but network expansion costs are still calculated and unresolved issues listed
here.

Parameters
df (pandas.DataFrame) – Dataframe containing remaining grid issues. Names of remain-
ing critical lines, stations and buses are in the index of the dataframe. Columns depend on
the equipment type. See mv_line_load() for format of remaining overloading issues of
lines, hv_mv_station_load() for format of remaining overloading issues of transform-
ers, and mv_voltage_deviation() for format of remaining voltage issues.

Provide this if you want to set unresolved_issues. For retrieval of data do not pass an
argument.

Returns
Dataframe with remaining grid issues. For more information on the dataframe see input
parameter df.

Return type
pandas.DataFrame

reduce_memory(attr_to_reduce=None, to_type='float32')
Reduces size of dataframes containing time series to save memory.

See reduce_memory for more information.

Parameters
• attr_to_reduce (list(str), optional) – List of attributes to reduce size for.

Attributes need to be dataframes containing only time series. Possible options are:
‘pfa_p’, ‘pfa_q’, ‘v_res’, ‘i_res’, and ‘grid_losses’. Per default, all these attributes are
reduced.

• to_type (str, optional) – Data type to convert time series data to. This is a trade-
off between precision and memory. Default: “float32”.

80 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Notes

Reducing the data type of the seeds for the power flow analysis, pfa_v_mag_pu_seed and
pfa_v_ang_seed , can lead to non-convergence of the power flow analysis, wherefore memory reduc-
tion is not provided for those attributes.

equality_check(results_obj)
Checks the equality of two results objects.

Parameters
results_obj (:class:~.network.results.Results) – Contains the results of ana-
lyze function with default settings.

Returns
True if equality check is successful, False otherwise.

Return type
bool

to_csv(directory, parameters=None, reduce_memory=False, save_seed=False, **kwargs)
Saves results to csv.

Saves power flow results and grid expansion results to separate directories. Which results are saved depends
on what is specified in parameters. Per default, all attributes are saved.

Power flow results are saved to directory ‘powerflow_results’ and comprise the following, if not otherwise
specified:

• ‘v_res’ : Attribute v_res is saved to voltages_pu.csv.

• ‘i_res’ : Attribute i_res is saved to currents.csv.

• ‘pfa_p’ : Attribute pfa_p is saved to active_powers.csv.

• ‘pfa_q’ : Attribute pfa_q is saved to reactive_powers.csv.

• ‘s_res’ : Attribute s_res is saved to apparent_powers.csv.

• ‘grid_losses’ : Attribute grid_losses is saved to grid_losses.csv.

• ‘pfa_slack’ : Attribute pfa_slack is saved to pfa_slack.csv.

• ‘pfa_v_mag_pu_seed’ : Attribute pfa_v_mag_pu_seed is saved to pfa_v_mag_pu_seed.csv, if
save_seed is set to True.

• ‘pfa_v_ang_seed’ : Attribute pfa_v_ang_seed is saved to pfa_v_ang_seed.csv, if save_seed is set
to True.

Grid expansion results are saved to directory ‘grid_expansion_results’ and comprise the following, if not
otherwise specified:

• grid_expansion_costs : Attribute grid_expansion_costs is saved to grid_expansion_costs.csv.

• equipment_changes : Attribute equipment_changes is saved to equipment_changes.csv.

• unresolved_issues : Attribute unresolved_issues is saved to unresolved_issues.csv.

Parameters
• directory (str) – Main directory to save the results in.

• parameters (None or dict, optional) – Specifies which results to save. By
default this is set to None, in which case all results are saved. To only save
certain results provide a dictionary. Possible keys are ‘powerflow_results’ and

1.8. API 81

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.2.0

‘grid_expansion_results’. Corresponding values must be lists with attributes to save
or None to save all attributes. For example, with the first input only the power flow
results i_res and v_res are saved, and with the second input all power flow results are
saved.

{'powerflow_results': ['i_res', 'v_res']}

{'powerflow_results': None}

See function docstring for possible power flow and grid expansion results to save and
under which file name they are saved.

• reduce_memory (bool, optional) – If True, size of dataframes containing time
series to save memory is reduced using reduce_memory. Optional parameters of
reduce_memory can be passed as kwargs to this function. Default: False.

• save_seed (bool, optional) – If True, pfa_v_mag_pu_seed and
pfa_v_ang_seed are as well saved as csv. As these are only relevant if calcu-
lations are not final, the default is False, in which case they are not saved.

• kwargs – Kwargs may contain optional arguments of reduce_memory.

from_csv(data_path, parameters=None, dtype=None, from_zip_archive=False)
Restores results from csv files.

See to_csv() for more information on which results can be saved and under which filename and directory
they are stored.

Parameters
• data_path (str) – Main data path results are saved in. Must be directory or zip

archive.

• parameters (None or dict, optional) – Specifies which results to restore. By
default this is set to None, in which case all available results are restored. To only
restore certain results provide a dictionary. Possible keys are ‘powerflow_results’ and
‘grid_expansion_results’. Corresponding values must be lists with attributes to restore
or None to restore all available attributes. See function docstring parameters parameter
in to_csv() for more information.

• dtype (str, optional) – Numerical data type for data to be loaded from csv, e.g.
“float32”. Per default this is None in which case data type is inferred.

• from_zip_archive (bool, optional) – Set True if data is archived in a zip
archive. Default: False.

edisgo.network.timeseries module

class edisgo.network.timeseries.TimeSeries(**kwargs)
Bases: object

Holds component-specific active and reactive power time series.

All time series are fixed time series that in case of flexibilities result after application of a heuristic or optimisation.
They can be used for power flow calculations.

Also holds any raw time series data that was used to generate component-specific time series in attribute
time_series_raw. See TimeSeriesRaw for more information.

82 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

eDisGo Documentation, Release 0.2.0

Parameters
timeindex (pandas.DatetimeIndex, optional) – Can be used to define a time range for which
to obtain the provided time series and run power flow analysis. Default: None.

time_series_raw

Raw time series. See TimeSeriesRaw for more information.

Type
TimeSeriesRaw

property is_worst_case: bool

Time series mode.

Is used to distinguish between normal time series analysis and worst-case analysis. Is determined by
checking if the timindex starts before 1971 as the default for worst-case is 1970. Be mindful when creating
your own worst-cases.

Returns
Indicates if current time series is worst-case time series with different assumptions for mv
and lv simultaneities.

Return type
bool

property timeindex

Time index all time-dependent attributes are indexed by.

Is used as default time steps in e.g. power flow analysis.

Parameters
ind (pandas.DatetimeIndex) – Time index all time-dependent attributes are indexed by.

Returns
Time index all time-dependent attributes are indexed by.

Return type
pandas.DatetimeIndex

property generators_active_power

Active power time series of generators in MW.

Parameters
df (pandas.DataFrame) – Active power time series of all generators in topology in MW.
Index of the dataframe is a time index and column names are names of generators.

Returns
Active power time series of all generators in topology in MW for time steps given in
timeindex. For more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

property generators_reactive_power

Reactive power time series of generators in MVA.

Parameters
df (pandas.DataFrame) – Reactive power time series of all generators in topology in MVA.
Index of the dataframe is a time index and column names are names of generators.

Returns
Reactive power time series of all generators in topology in MVA for time steps given in
timeindex. For more information on the dataframe see input parameter df.

1.8. API 83

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Return type
pandas.DataFrame

property loads_active_power

Active power time series of loads in MW.

Parameters
df (pandas.DataFrame) – Active power time series of all loads in topology in MW. Index
of the dataframe is a time index and column names are names of loads.

Returns
Active power time series of all loads in topology in MW for time steps given in timeindex.
For more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

property loads_reactive_power

Reactive power time series of loads in MVA.

Parameters
df (pandas.DataFrame) – Reactive power time series of all loads in topology in MVA.
Index of the dataframe is a time index and column names are names of loads.

Returns
Reactive power time series of all loads in topology in MVA for time steps given in
timeindex. For more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

charging_points_active_power(edisgo_object)
Returns a subset of loads_active_power containing only the time series of charging points.

Parameters
edisgo_object (EDisGo) –

Returns
Pandas DataFrame with active power time series of charging points.

Return type
pandas.DataFrame

charging_points_reactive_power(edisgo_object)
Returns a subset of loads_reactive_power containing only the time series of charging points.

Parameters
edisgo_object (EDisGo) –

Returns
Pandas DataFrame with reactive power time series of charging points.

Return type
pandas.DataFrame

property storage_units_active_power

Active power time series of storage units in MW.

Parameters
df (pandas.DataFrame) – Active power time series of all storage units in topology in MW.
Index of the dataframe is a time index and column names are names of storage units.

84 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Returns
Active power time series of all storage units in topology in MW for time steps given in
timeindex. For more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

property storage_units_reactive_power

Reactive power time series of storage units in MVA.

Parameters
df (pandas.DataFrame) – Reactive power time series of all storage units in topology in
MVA. Index of the dataframe is a time index and column names are names of storage
units.

Returns
Reactive power time series of all storage units in topology in MVA for time steps given in
timeindex. For more information on the dataframe see input parameter df.

Return type
pandas.DataFrame

reset()

Resets all time series.

Active and reactive power time series of all loads, generators and storage units are deleted, as well as
timeindex and everything stored in time_series_raw.

set_active_power_manual(edisgo_object, ts_generators=None, ts_loads=None, ts_storage_units=None)
Sets given component active power time series.

If time series for a component were already set before, they are overwritten.

Parameters
• edisgo_object (EDisGo) –

• ts_generators (pandas.DataFrame) – Active power time series in MW of genera-
tors. Index of the data frame is a datetime index. Columns contain generators names
of generators to set time series for.

• ts_loads (pandas.DataFrame) – Active power time series in MW of loads. Index of
the data frame is a datetime index. Columns contain load names of loads to set time
series for.

• ts_storage_units (pandas.DataFrame) – Active power time series in MW of stor-
age units. Index of the data frame is a datetime index. Columns contain storage unit
names of storage units to set time series for.

set_reactive_power_manual(edisgo_object, ts_generators=None, ts_loads=None,
ts_storage_units=None)

Sets given component reactive power time series.

If time series for a component were already set before, they are overwritten.

Parameters
• edisgo_object (EDisGo) –

• ts_generators (pandas.DataFrame) – Reactive power time series in MVA of gener-
ators. Index of the data frame is a datetime index. Columns contain generators names
of generators to set time series for.

1.8. API 85

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

• ts_loads (pandas.DataFrame) – Reactive power time series in MVA of loads. Index
of the data frame is a datetime index. Columns contain load names of loads to set time
series for.

• ts_storage_units (pandas.DataFrame) – Reactive power time series in MVA of
storage units. Index of the data frame is a datetime index. Columns contain storage
unit names of storage units to set time series for.

set_worst_case(edisgo_object, cases, generators_names=None, loads_names=None,
storage_units_names=None)

Sets demand and feed-in of loads, generators and storage units for the specified worst cases.

Per default time series are set for all loads, generators and storage units in the network.

Possible worst cases are ‘load_case’ (heavy load flow case) and ‘feed-in_case’ (reverse power flow case).
Each case is set up once for dimensioning of the MV grid (‘load_case_mv’/’feed-in_case_mv’) and once
for the dimensioning of the LV grid (‘load_case_lv’/’feed-in_case_lv’), as different simultaneity factors
are assumed for the different voltage levels.

Assumed simultaneity factors specified in the config section worst_case_scale_factor are used to generate
active power demand or feed-in. For the reactive power behavior fixed cosphi is assumed. The power
factors set in the config section reactive_power_factor and the power factor mode, defining whether com-
ponents behave inductive or capacitive, given in the config section reactive_power_mode, are used.

Component specific information is given below:

• Generators

Worst case feed-in time series are distinguished by technology (PV, wind and all other)
and whether it is a load or feed-in case. In case of generator worst case time series it is not
distinguished by whether it is used to analyse the MV or LV. However, both options are
generated as it is distinguished in the case of loads. Worst case scaling factors for gener-
ators are specified in the config section worst_case_scale_factor through the parameters:
‘feed-in_case_feed-in_pv’, ‘feed-in_case_feed-in_wind’, ‘feed-in_case_feed-in_other’,
‘load_case_feed-in_pv’, load_case_feed-in_wind’, and ‘load_case_feed-in_other’.

For reactive power a fixed cosphi is assumed. A different reactive power factor is used for
generators in the MV and generators in the LV. The reactive power factors for generators
are specified in the config section reactive_power_factor through the parameters: ‘mv_gen’
and ‘lv_gen’.

• Conventional loads

Worst case load time series are distinguished by whether it is a load or feed-in case
and whether it used to analyse the MV or LV. Worst case scaling factors for con-
ventional loads are specified in the config section worst_case_scale_factor through the
parameters: ‘mv_feed-in_case_load’, ‘lv_feed-in_case_load’, ‘mv_load_case_load’, and
‘lv_load_case_load’.

For reactive power a fixed cosphi is assumed. A different reactive power factor is used for
loads in the MV and loads in the LV. The reactive power factors for conventional loads are
specified in the config section reactive_power_factor through the parameters: ‘mv_load’
and ‘lv_load’.

• Charging points

Worst case demand time series are distinguished by use case (home charging, work
charging, public (slow) charging and HPC), by whether it is a load or feed-in case
and by whether it used to analyse the MV or LV. Worst case scaling factors for charg-
ing points are specified in the config section worst_case_scale_factor through the

86 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

parameters: ‘mv_feed-in_case_cp_home’, ‘mv_feed-in_case_cp_work’, ‘mv_feed-
in_case_cp_public’, and ‘mv_feed-in_case_cp_hpc’, ‘lv_feed-in_case_cp_home’,
‘lv_feed-in_case_cp_work’, ‘lv_feed-in_case_cp_public’, and ‘lv_feed-in_case_cp_hpc’,
‘mv_load-in_case_cp_home’, ‘mv_load-in_case_cp_work’, ‘mv_load-in_case_cp_public’,
and ‘mv_load-in_case_cp_hpc’, ‘lv_load-in_case_cp_home’, ‘lv_load-in_case_cp_work’,
‘lv_load-in_case_cp_public’, and ‘lv_load-in_case_cp_hpc’.

For reactive power a fixed cosphi is assumed. A different reactive power factor is used
for charging points in the MV and charging points in the LV. The reactive power factors
for charging points are specified in the config section reactive_power_factor through the
parameters: ‘mv_cp’ and ‘lv_cp’.

• Heat pumps

Worst case demand time series are distinguished by whether it is a load or feed-in case and
by whether it used to analyse the MV or LV. Worst case scaling factors for heat pumps are
specified in the config section worst_case_scale_factor through the parameters: ‘mv_feed-
in_case_hp’, ‘lv_feed-in_case_hp’, ‘mv_load_case_hp’, and ‘lv_load_case_hp’.

For reactive power a fixed cosphi is assumed. A different reactive power factor is used for
heat pumps in the MV and heat pumps in the LV. The reactive power factors for heat pumps
are specified in the config section reactive_power_factor through the parameters: ‘mv_hp’
and ‘lv_hp’.

• Storage units

Worst case feed-in time series are distinguished by whether it is a load or feed-in case. In
case of storage units worst case time series it is not distinguished by whether it is used
to analyse the MV or LV. However, both options are generated as it is distinguished in
the case of loads. Worst case scaling factors for storage units are specified in the con-
fig section worst_case_scale_factor through the parameters: ‘feed-in_case_storage’ and
‘load_case_storage’.

For reactive power a fixed cosphi is assumed. A different reactive power factor is used for
storage units in the MV and storage units in the LV. The reactive power factors for stor-
age units are specified in the config section reactive_power_factor through the parameters:
‘mv_storage’ and ‘lv_storage’.

Parameters
• edisgo_object (EDisGo) –

• cases (list(str)) – List with worst-cases to generate time series for. Can be ‘feed-
in_case’, ‘load_case’ or both.

• generators_names (list(str)) – Defines for which generators to set worst case
time series. If None, time series are set for all generators. Default: None.

• loads_names (list(str)) – Defines for which loads to set worst case time series.
If None, time series are set for all loads. Default: None.

• storage_units_names (list(str)) – Defines for which storage units to set worst
case time series. If None, time series are set for all storage units. Default: None.

1.8. API 87

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Notes

Be careful, this function overwrites all previously set time series in the case that these are not worst case
time series. If previously set time series are worst case time series is checked using is_worst_case.

Further, if this function is called for a component whose worst-case time series are already set, they are
overwritten, even if previously set time series were set for a different worst-case.

Also be aware that loads for which type information is not set are handled as conventional loads.

predefined_fluctuating_generators_by_technology(edisgo_object, ts_generators,
generator_names=None)

Set active power feed-in time series for fluctuating generators by technology.

In case time series are provided per technology and weather cell ID, active power feed-in time series are
also set by technology and weather cell ID.

Parameters
• edisgo_object (EDisGo) –

• ts_generators (str or pandas.DataFrame) – Defines which technology-specific or
technology and weather cell specific active power time series to use. Possible options
are:

– ’oedb’

Technology and weather cell specific hourly feed-in time series are obtained
from the OpenEnergy DataBase for the weather year 2011. See edisgo.
io.timeseries_import.import_feedin_timeseries() for more infor-
mation.

– pandas.DataFrame

DataFrame with self-provided feed-in time series per technology or per tech-
nology and weather cell ID normalized to a nominal capacity of 1. In case time
series are provided only by technology, columns of the DataFrame contain the
technology type as string. In case time series are provided by technology and
weather cell ID columns need to be a pandas.MultiIndex with the first level
containing the technology as string and the second level the weather cell ID as
integer. Index needs to be a pandas.DatetimeIndex.

When importing a ding0 grid and/or using predefined scenarios of the future
generator park, each generator has an assigned weather cell ID that identifies
the weather data cell from the weather data set used in the research project
open_eGo to determine feed-in profiles. The weather cell ID can be retrieved
from column weather_cell_id in generators_df and could be overwritten to
use own weather cells.

• generator_names (list(str)) – Defines for which fluctuating generators to use
technology-specific time series. If None, all generators technology (and weather cell)
specific time series are provided for are used. In case the time series are retrieved from
the oedb, all solar and wind generators are used. Default: None.

predefined_dispatchable_generators_by_technology(edisgo_object, ts_generators,
generator_names=None)

Set active power feed-in time series for dispatchable generators by technology.

Parameters
• edisgo_object (EDisGo) –

88 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
https://openenergy-platform.org/dataedit/schemas
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
https://openegoproject.wordpress.com/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• ts_generators (pandas.DataFrame) – DataFrame with self-provided active power
time series of each type of dispatchable generator normalized to a nominal capacity
of 1. Columns contain the technology type as string, e.g. ‘gas’, ‘coal’. Use ‘other’
if you don’t want to explicitly provide a time series for every possible technology. In
the current grid existing generator technologies can be retrieved from column type in
generators_df . Index needs to be a pandas.DatetimeIndex.

• generator_names (list(str)) – Defines for which dispatchable generators to use
technology-specific time series. If None, all dispatchable generators technology-
specific time series are provided for are used. In case ts_generators contains a col-
umn ‘other’, all dispatchable generators in the network (i.e. all but solar and wind
generators) are used.

predefined_conventional_loads_by_sector(edisgo_object, ts_loads, load_names=None)
Set active power demand time series for conventional loads by sector.

Parameters
• edisgo_object (EDisGo) –

• ts_loads (str or pandas.DataFrame) – Defines which sector-specific active power
time series to use. Possible options are:

– ’demandlib’

Time series for the year specified timeindex are generated using standard
electric load profiles from the oemof demandlib. The demandlib provides
sector-specific time series for the sectors ‘residential’, ‘retail’, ‘industrial’, and
‘agricultural’.

– pandas.DataFrame

DataFrame with load time series per sector normalized to an annual consump-
tion of 1. Index needs to be a pandas.DatetimeIndex. Columns contain the
sector as string. In the current grid existing load types can be retrieved from
column sector in loads_df (make sure to select type ‘conventional_load’). In
ding0 grid the differentiated sectors are ‘residential’, ‘retail’, ‘industrial’, and
‘agricultural’.

• load_names (list(str)) – Defines for which conventional loads to use sector-
specific time series. If None, all loads of sectors for which sector-specific time series
are provided are used. In case the demandlib is used, all loads of sectors ‘residential’,
‘retail’, ‘industrial’, and ‘agricultural’ are used.

predefined_charging_points_by_use_case(edisgo_object, ts_loads, load_names=None)
Set active power demand time series for charging points by their use case.

Parameters
• edisgo_object (EDisGo) –

• ts_loads (pandas.DataFrame) – DataFrame with self-provided load time series per
use case normalized to a nominal power of the charging point of 1. Index needs to be
a pandas.DatetimeIndex. Columns contain the use case as string. In the current grid
existing use case types can be retrieved from column sector in loads_df (make sure
to select type ‘charging_point’). When using charging point input from SimBEV the
differentiated use cases are ‘home’, ‘work’, ‘public’ and ‘hpc’.

• load_names (list(str)) – Defines for which charging points to use use-case-
specific time series. If None, all charging points of use cases for which use-case-
specific time series are provided are used.

1.8. API 89

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/oemof/demandlib/
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

fixed_cosphi(edisgo_object, generators_parametrisation=None, loads_parametrisation=None,
storage_units_parametrisation=None)

Sets reactive power of specified components assuming a fixed power factor.

Overwrites reactive power time series in case they already exist.

Parameters
• generators_parametrisation (str or pandas.DataFrame or None) – Sets fixed

cosphi parameters for generators. Possible options are:

– ’default’

Default configuration is used for all generators in the grid. To this end, the
power factors set in the config section reactive_power_factor and the power
factor mode, defining whether components behave inductive or capacitive,
given in the config section reactive_power_mode, are used.

– pandas.DataFrame

DataFrame with fix cosphi parametrisation for specified generators. Columns
are:

∗ ’components’
[list(str)] List with generators to apply parametrisation for.

∗ ’mode’
[str] Defines whether generators behave inductive or capacitive. Possi-
ble options are ‘inductive’, ‘capacitive’ or ‘default’. In case of ‘default’,
configuration from config section reactive_power_mode is used.

∗ ’power_factor’
[float or str] Defines the fixed cosphi power factor. The power factor can
either be directly provided as float or it can be set to ‘default’, in which
case configuration from config section reactive_power_factor is used.

Index of the dataframe is ignored.

– None

No reactive power time series are set.

Default: None.

• loads_parametrisation (str or pandas.DataFrame or None) – Sets fixed cosphi
parameters for loads. The same options as for parameter generators_parametrisation
apply.

• storage_units_parametrisation (str or pandas.DataFrame or None) – Sets fixed
cosphi parameters for storage units. The same options as for parameter genera-
tors_parametrisation apply.

90 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html

eDisGo Documentation, Release 0.2.0

Notes

This function requires active power time series to be previously set.

property residual_load

Returns residual load in network.

Residual load for each time step is calculated from total load minus total generation minus storage active
power (discharge is positive). A positive residual load represents a load case while a negative residual load
here represents a feed-in case. Grid losses are not considered.

Returns
Series with residual load in MW.

Return type
pandas.Series

property timesteps_load_feedin_case

Contains residual load and information on feed-in and load case.

Residual load is calculated from total (load - generation) in the network. Grid losses are not considered.

Feed-in and load case are identified based on the generation, load and storage time series and defined as
follows:

1. Load case: positive (load - generation - storage) at HV/MV substation
2. Feed-in case: negative (load - generation - storage) at HV/MV substation

Returns
Series with information on whether time step is handled as load case (‘load_case’) or
feed-in case (‘feed-in_case’) for each time step in timeindex.

Return type
pandas.Series

reduce_memory(attr_to_reduce=None, to_type='float32', time_series_raw=True, **kwargs)
Reduces size of dataframes to save memory.

See reduce_memory for more information.
Parameters

• attr_to_reduce (list(str), optional) – List of attributes to reduce size
for. Per default, all active and reactive power time series of generators, loads, and
storage units are reduced.

• to_type (str, optional) – Data type to convert time series data to. This is a
tradeoff between precision and memory. Default: “float32”.

• time_series_raw (bool, optional) – If True raw time series data in
time_series_raw is reduced as well. Default: True.

• attr_to_reduce_raw (list(str), optional) – List of attributes in
TimeSeriesRaw to reduce size for. See reduce_memory for default.

to_csv(directory, reduce_memory=False, time_series_raw=False, **kwargs)
Saves component time series to csv.

Saves the following time series to csv files with the same file name (if the time series dataframe is not
empty):

• loads_active_power and loads_reactive_power
• generators_active_power and generators_reactive_power
• storage_units_active_power and storage_units_reactive_power

1.8. API 91

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

If parameter time_series_raw is set to True, raw time series data is saved to csv as well. See to_csv for
more information.

Parameters
• directory (str) – Directory to save time series in.

• reduce_memory (bool, optional) – If True, size of dataframes is reduced us-
ing reduce_memory. Optional parameters of reduce_memory can be passed as
kwargs to this function. Default: False.

• time_series_raw (bool, optional) – If True raw time series data in
time_series_raw is saved to csv as well. Per default all raw time series data is
then stored in a subdirectory of the specified directory called “time_series_raw”.
Further, if reduce_memory is set to True, raw time series data is reduced as well.
To change this default behavior please call to_csv separately. Default: False.

• kwargs – Kwargs may contain arguments of reduce_memory.

from_csv(data_path, dtype=None, time_series_raw=False, from_zip_archive=False, **kwargs)
Restores time series from csv files.

See to_csv() for more information on which time series can be saved and thus restored.
Parameters

• data_path (str) – Data path time series are saved in. Must be a directory or zip
archive.

• dtype (str, optional) – Numerical data type for data to be loaded from csv.
E.g. “float32”. Default: None.

• time_series_raw (bool, optional) – If True raw time series data is as well
read in (see from_csv for further information). Directory data is restored from
can be specified through kwargs. Default: False.

• from_zip_archive (bool, optional) – Set True if data is archived in a zip
archive. Default: False.

• directory_raw (str, optional) – Directory to read raw time series data
from. Per default this is a subdirectory of the specified directory called
“time_series_raw”.

check_integrity()

Check for NaN, duplicated indices or columns and if time series is empty.

drop_component_time_series(df_name, comp_names)
Drops component time series if they exist.

Parameters
• df_name (str) – Name of attribute of given object holding the dataframe to re-

move columns from. Can e.g. be “generators_active_power” if time series should
be removed from generators_active_power.

• comp_names (str or list(str)) – Names of components to drop.

add_component_time_series(df_name, ts_new)
Add component time series by concatenating existing and provided dataframe.

Possibly already component time series are dropped before appending newly provided time series using
drop_component_time_series.

Parameters

92 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• df_name (str) – Name of attribute of given object holding the dataframe to add
columns to. Can e.g. be “generators_active_power” if time series should be added
to generators_active_power.

• ts_new (pandas.DataFrame) – Dataframe with new time series to add to existing
time series dataframe.

resample_timeseries(method='ffill', freq='15min')
Resamples all generator, load and storage time series to a desired resolution.

See resample_timeseries for more information.
Parameters

• method (str, optional) – See resample_timeseries for more information.

• freq (str, optional) – See resample_timeseries for more information.

class edisgo.network.timeseries.TimeSeriesRaw

Bases: object

Holds raw time series data, e.g. sector-specific demand and standing times of EV.

Normalised time series are e.g. sector-specific demand time series or technology-specific feed-in time series.
Time series needed for flexibilities are e.g. heat time series or curtailment time series.

q_control

Dataframe with information on applied reactive power control or in case of conventional loads assumed re-
active power behavior. Index of the dataframe are the component names as in index of generators_df ,
loads_df , and storage_units_df . Columns are “type” with the type of Q-control applied (can be
“fixed_cosphi”, “cosphi(P)”, or “Q(V)”), “power_factor” with the (maximum) power factor, “q_sign”
giving the sign of the reactive power (only applicable to “fixed_cosphi”), “parametrisation” with the
parametrisation of the respective Q-control (only applicable to “cosphi(P)” and “Q(V)”).

Type
pandas.DataFrame

fluctuating_generators_active_power_by_technology

DataFrame with feed-in time series per technology or technology and weather cell ID normalized to a nom-
inal capacity of 1. Columns can either just contain the technology type as string or be a pandas.MultiIndex
with the first level containing the technology as string and the second level the weather cell ID as integer.
Index is a pandas.DatetimeIndex.

Type
pandas.DataFrame

dispatchable_generators_active_power_by_technology

DataFrame with feed-in time series per technology normalized to a nominal capacity of 1. Columns contain
the technology type as string. Index is a pandas.DatetimeIndex.

Type
pandas.DataFrame

conventional_loads_active_power_by_sector

DataFrame with load time series of each type of conventional load normalized to an annual consump-
tion of 1. Index needs to be a pandas.DatetimeIndex. Columns represent load type. In ding0 grids the
differentiated sectors are ‘residential’, ‘retail’, ‘industrial’, and ‘agricultural’.

Type
pandas.DataFrame

charging_points_active_power_by_use_case

DataFrame with charging demand time series per use case normalized to a nominal capacity of 1. Columns
contain the use case as string. Index is a pandas.DatetimeIndex.

1.8. API 93

https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html

eDisGo Documentation, Release 0.2.0

Type
pandas.DataFrame

reduce_memory(attr_to_reduce=None, to_type='float32')
Reduces size of dataframes to save memory.

See reduce_memory for more information.
Parameters

• attr_to_reduce (list(str), optional) – List of attributes to re-
duce size for. Attributes need to be dataframes containing only time
series. Per default the following attributes are reduced if they ex-
ist: q_control, fluctuating_generators_active_power_by_technology,
dispatchable_generators_active_power_by_technology,
conventional_loads_active_power_by_sector, charg-
ing_points_active_power_by_use_case.

• to_type (str, optional) – Data type to convert time series data to. This is a
tradeoff between precision and memory. Default: “float32”.

to_csv(directory, reduce_memory=False, **kwargs)
Saves time series to csv.

Saves all attributes that are set to csv files with the same file name. See class definition for possible
attributes.

Parameters
• directory (str) – Directory to save time series in.

• reduce_memory (bool, optional) – If True, size of dataframes is reduced us-
ing reduce_memory. Optional parameters of reduce_memory can be passed as
kwargs to this function. Default: False.

• kwargs – Kwargs may contain optional arguments of reduce_memory.

from_csv(directory)
Restores time series from csv files.

See to_csv() for more information on which time series are saved.
Parameters

directory (str) – Directory time series are saved in.

edisgo.network.topology module

class edisgo.network.topology.Topology(**kwargs)
Bases: object

Container for all grid topology data of a single MV grid.

Data may as well include grid topology data of underlying LV grids.
Parameters

config (None or Config) – Provide your configurations if you want to load self-provided
equipment data. Path to csv files containing the technical data is set in config_system.cfg in
sections system_dirs and equipment. The default is None in which case the equipment data
provided by eDisGo is used.

property loads_df

Dataframe with all loads in MV network and underlying LV grids.

94 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

eDisGo Documentation, Release 0.2.0

Parameters
df (pandas.DataFrame) – Dataframe with all loads (incl. charging points, heat pumps,
etc.) in MV network and underlying LV grids. Index of the dataframe are load names
as string. Columns of the dataframe are:

bus
[str] Identifier of bus load is connected to.

p_set
[float] Peak load or nominal capacity in MW.

type
[str] Type of load, e.g. ‘conventional_load’, ‘charging_point’ or ‘heat_pump’.
This information is for example currently necessary when setting up a worst case
analysis, as different types of loads are treated differently.

annual_consumption
[float] Annual consumption in MWh.

sector
[str] Further specifies type of load.

In case of conventional loads this attribute is used if deman-
dlib is used to generate sector-specific time series (see function
predefined_conventional_loads_by_sector). It is further used when new
generators are integrated into the grid, as e.g. smaller PV rooftop generators are
most likely to be located in a household (see function connect_to_lv). The
sector needs to either be ‘agricultural’, ‘industrial’, ‘residential’ or ‘retail’.

In case of charging points this attribute is used to define the charging point use case
(‘home’, ‘work’, ‘public’ or ‘hpc’) to determine whether a charging process can be
flexibilised, as it is assumed that only charging processes at private charging points
(‘home’ and ‘work’) can be flexibilised (see function charging_strategy). It
is further used when charging points are integrated into the grid, as e.g. ‘home’
charging points are allocated to a household (see function connect_to_lv).

In case of heat pumps it is used when heat pumps are integrated into the grid,
as e.g. heat pumps for individual heating are allocated to an existing load (see
function connect_to_lv). The sector needs to either be ‘individual_heating’ or
‘district_heating’.

Returns
Dataframe with all loads in MV network and underlying LV grids. For more information
on the dataframe see input parameter df.

Return type
pandas.DataFrame

property generators_df

Dataframe with all generators in MV network and underlying LV grids.
Parameters

df (pandas.DataFrame) – Dataframe with all generators in MV network and underly-
ing LV grids. Index of the dataframe are generator names as string. Columns of the
dataframe are:

bus
[str] Identifier of bus generator is connected to.

p_nom
[float] Nominal power in MW.

1.8. API 95

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

type
[str] Type of generator, e.g. ‘solar’, ‘run_of_river’, etc. Is used in case generator
type specific time series are provided.

control
[str] Control type of generator used for power flow analysis. In MV and LV grids
usually ‘PQ’.

weather_cell_id
[int] ID of weather cell, that identifies the weather data cell from the weather data
set used in the research project open_eGo to determine feed-in profiles of wind
and solar generators. Only required when time series of wind and solar generators
are assigned using precalculated time series from the OpenEnergy DataBase.

subtype
[str] Further specification of type, e.g. ‘solar_roof_mounted’. Currently not re-
quired for any functionality.

Returns
Dataframe with all generators in MV network and underlying LV grids. For more in-
formation on the dataframe see input parameter df.

Return type
pandas.DataFrame

property storage_units_df

Dataframe with all storage units in MV grid and underlying LV grids.
Parameters

df (pandas.DataFrame) – Dataframe with all storage units in MV grid and underlying
LV grids. Index of the dataframe are storage names as string. Columns of the dataframe
are:

bus
[str] Identifier of bus storage unit is connected to.

control
[str] Control type of storage unit used for power flow analysis, usually ‘PQ’.

p_nom
[float] Nominal power in MW.

Returns
Dataframe with all storage units in MV network and underlying LV grids. For more
information on the dataframe see input parameter df.

Return type
pandas.DataFrame

property transformers_df

Dataframe with all MV/LV transformers.
Parameters

df (pandas.DataFrame) – Dataframe with all MV/LV transformers. Index of the
dataframe are transformer names as string. Columns of the dataframe are:

bus0
[str] Identifier of bus at the transformer’s primary (MV) side.

bus1
[str] Identifier of bus at the transformer’s secondary (LV) side.

96 Chapter 1. Contents

https://openegoproject.wordpress.com/
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

x_pu
[float] Per unit series reactance.

r_pu
[float] Per unit series resistance.

s_nom
[float] Nominal apparent power in MW.

type_info
[str] Type of transformer.

Returns
Dataframe with all MV/LV transformers. For more information on the dataframe see
input parameter df.

Return type
pandas.DataFrame

property transformers_hvmv_df

Dataframe with all HV/MV transformers.
Parameters

df (pandas.DataFrame) – Dataframe with all HV/MV transformers, with the same for-
mat as transformers_df .

Returns
Dataframe with all HV/MV transformers. For more information on format see
transformers_df .

Return type
pandas.DataFrame

property lines_df

Dataframe with all lines in MV network and underlying LV grids.
Parameters

df (pandas.DataFrame) – Dataframe with all lines in MV network and underlying LV
grids. Index of the dataframe are line names as string. Columns of the dataframe are:

bus0
[str] Identifier of first bus to which line is attached.

bus1
[str] Identifier of second bus to which line is attached.

length
[float] Line length in km.

x
[float] Reactance of line (or in case of multiple parallel lines total reactance of
lines) in Ohm.

r
[float] Resistance of line (or in case of multiple parallel lines total resistance of
lines) in Ohm.

s_nom
[float] Apparent power which can pass through the line (or in case of multiple
parallel lines total apparent power which can pass through the lines) in MVA.

num_parallel
[int] Number of parallel lines.

1.8. API 97

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

type_info
[str] Type of line as e.g. given in equipment_data.

kind
[str] Specifies whether line is a cable (‘cable’) or overhead line (‘line’).

Returns
Dataframe with all lines in MV network and underlying LV grids. For more information
on the dataframe see input parameter df.

Return type
pandas.DataFrame

property buses_df

Dataframe with all buses in MV network and underlying LV grids.
Parameters

df (pandas.DataFrame) – Dataframe with all buses in MV network and underlying LV
grids. Index of the dataframe are bus names as strings. Columns of the dataframe are:

v_nom
[float] Nominal voltage in kV.

x
[float] x-coordinate (longitude) of geolocation.

y
[float] y-coordinate (latitude) of geolocation.

mv_grid_id
[int] ID of MV grid the bus is in.

lv_grid_id
[int] ID of LV grid the bus is in. In case of MV buses this is NaN.

in_building
[bool] Signifies whether a bus is inside a building, in which case only components
belonging to this house connection can be connected to it.

Returns
Dataframe with all buses in MV network and underlying LV grids.

Return type
pandas.DataFrame

property switches_df

Dataframe with all switches in MV network and underlying LV grids.

Switches are implemented as branches that, when they are closed, are connected to a bus (bus_closed)
such that there is a closed ring, and when they are open, connected to a virtual bus (bus_open), such that
there is no closed ring. Once the ring is closed, the virtual is a single bus that is not connected to the rest
of the grid.

Parameters
df (pandas.DataFrame) – Dataframe with all switches in MV network and underlying
LV grids. Index of the dataframe are switch names as string. Columns of the dataframe
are:

bus_open
[str] Identifier of bus the switch branch is connected to when the switch is open.

bus_closed
[str] Identifier of bus the switch branch is connected to when the switch is closed.

98 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

branch
[str] Identifier of branch that represents the switch.

type
[str] Type of switch, e.g. switch disconnector.

Returns
Dataframe with all switches in MV network and underlying LV grids. For more infor-
mation on the dataframe see input parameter df.

Return type
pandas.DataFrame

property charging_points_df

Returns a subset of loads_df containing only charging points.
Parameters

type (str) – Load type. Default: “charging_point”

Returns
Pandas DataFrame with all loads of the given type.

Return type
pandas.DataFrame

property id

MV network ID.
Returns

MV network ID.

Return type
int

property mv_grid

Medium voltage network.

The medium voltage network object only contains components (lines, generators, etc.) that are in or con-
nected to the MV grid and does not include any components of the underlying LV grids (also not MV/LV
transformers).

Parameters
mv_grid (MVGrid) – Medium voltage network.

Returns
Medium voltage network.

Return type
MVGrid

property lv_grids

Yields generator object with all low voltage grids in network.
Returns

Yields generator object with LVGrid object.

Return type
LVGrid

get_lv_grid(name)
Returns LVGrid object for given LV grid ID or name.

Parameters
name (int or str) – LV grid ID as integer or LV grid name (string representation) as
string of the LV grid object that should be returned.

1.8. API 99

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Returns
LV grid object with the given LV grid ID or LV grid name (string representation).

Return type
LVGrid

property grid_district

Dictionary with MV grid district information.
Parameters

grid_district (dict) – Dictionary with the following MV grid district information:

’population’
[int] Number of inhabitants in grid district.

’geom’
[shapely.MultiPolygon] Geometry of MV grid district as (Multi)Polygon.

’srid’
[int] SRID (spatial reference ID) of grid district geometry.

Returns
Dictionary with MV grid district information. For more information on the dictionary
see input parameter grid_district.

Return type
dict

property rings

List of rings in the grid topology.

A ring is represented by the names of buses within that ring.
Returns

List of rings, where each ring is again represented by a list of buses within that ring.

Return type
list(list)

property equipment_data

Technical data of electrical equipment such as lines and transformers.
Returns

Dictionary with pandas.DataFrame containing equipment data. Keys of the dictio-
nary are ‘mv_transformers’, ‘mv_overhead_lines’, ‘mv_cables’, ‘lv_transformers’, and
‘lv_cables’.

Return type
dict

get_connected_lines_from_bus(bus_name)
Returns all lines connected to specified bus.

Parameters
bus_name (str) – Name of bus to get connected lines for.

Returns
Dataframe with connected lines with the same format as lines_df .

Return type
pandas.DataFrame

get_line_connecting_buses(bus_1, bus_2)
Returns information of line connecting bus_1 and bus_2.

Parameters

100 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://shapely.readthedocs.io/en/latest/manual.html#MultiPolygon
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

• bus_1 (str) – Name of first bus.

• bus_2 (str) – Name of second bus.

Returns
Dataframe with information of line connecting bus_1 and bus_2 in the same format as
lines_df .

Return type
pandas.DataFrame

get_connected_components_from_bus(bus_name)
Returns dictionary of components connected to specified bus.

Parameters
bus_name (str) – Identifier of bus to get connected components for.

Returns
Dictionary of connected components with keys ‘generators’, ‘loads’, ‘storage_units’,
‘lines’, ‘transformers’, ‘transformers_hvmv’, ‘switches’. Corresponding values are
component dataframes containing only components that are connected to the given bus.

Return type
dict of pandas.DataFrame

get_neighbours(bus_name)
Returns a set of neighbour buses of specified bus.

Parameters
bus_name (str) – Identifier of bus to get neighbouring buses for.

Returns
Set of identifiers of neighbouring buses.

Return type
set(str)

add_load(bus, p_set, type='conventional_load', **kwargs)
Adds load to topology.

Load name is generated automatically.
Parameters

• bus (str) – See loads_df for more information.

• p_set (float) – See loads_df for more information.

• type (str) – See loads_df for more information. Default: “conventional_load”

• kwargs – Kwargs may contain any further attributes you want to specify. See
loads_df for more information on additional attributes used for some functional-
ities in edisgo. Kwargs may also contain a load ID (provided through keyword ar-
gument load_id as string) used to generate a unique identifier for the newly added
load.

Returns
Unique identifier of added load.

Return type
str

add_generator(bus, p_nom, generator_type, control='PQ', **kwargs)
Adds generator to topology.

Generator name is generated automatically.

1.8. API 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Parameters
• bus (str) – See generators_df for more information.

• p_nom (float) – See generators_df for more information.

• generator_type (str) – Type of generator, e.g. ‘solar’ or ‘gas’. See ‘type’ in
generators_df for more information.

• control (str) – See generators_df for more information. Defaults to ‘PQ’.

• kwargs – Kwargs may contain any further attributes you want to specify. See
generators_df for more information on additional attributes used for some
functionalities in edisgo. Kwargs may also contain a generator ID (provided
through keyword argument generator_id as string) used to generate a unique iden-
tifier for the newly added generator.

Returns
Unique identifier of added generator.

Return type
str

add_storage_unit(bus, p_nom, control='PQ', **kwargs)
Adds storage unit to topology.

Storage unit name is generated automatically.
Parameters

• bus (str) – See storage_units_df for more information.

• p_nom (float) – See storage_units_df for more information.

• control (str, optional) – See storage_units_df for more information.
Defaults to ‘PQ’.

• kwargs – Kwargs may contain any further attributes you want to specify.

add_line(bus0, bus1, length, **kwargs)
Adds line to topology.

Line name is generated automatically. If type_info is provided, x, r, b and s_nom are calculated.
Parameters

• bus0 (str) – Identifier of connected bus.

• bus1 (str) – Identifier of connected bus.

• length (float) – See lines_df for more information.

• kwargs – Kwargs may contain any further attributes in lines_df . It is necessary
to either provide type_info to determine x, r, b and s_nom of the line, or to provide
x, r, b and s_nom directly.

add_bus(bus_name, v_nom, **kwargs)
Adds bus to topology.

If provided bus name already exists, a unique name is created.
Parameters

• bus_name (str) – Name of new bus.

• v_nom (float) – See buses_df for more information.

• x (float) – See buses_df for more information.

102 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

• y (float) – See buses_df for more information.

• lv_grid_id (int) – See buses_df for more information.

• in_building (bool) – See buses_df for more information.

Returns
Name of bus. If provided bus name already exists, a unique name is created.

Return type
str

remove_load(name)
Removes load with given name from topology.

If no other elements are connected, line and bus are removed as well.
Parameters

name (str) – Identifier of load as specified in index of loads_df .

remove_generator(name)
Removes generator with given name from topology.

If no other elements are connected, line and bus are removed as well.
Parameters

name (str) – Identifier of generator as specified in index of generators_df .

remove_storage_unit(name)
Removes storage with given name from topology.

If no other elements are connected, line and bus are removed as well.
Parameters

name (str) – Identifier of storage as specified in index of storage_units_df .

remove_line(name)
Removes line with given name from topology.

Line is only removed, if it does not result in isolated buses. A warning is raised in that case.
Parameters

name (str) – Identifier of line as specified in index of lines_df .

remove_bus(name)
Removes bus with given name from topology.

Parameters
name (str) – Identifier of bus as specified in index of buses_df .

Notes

Only isolated buses can be deleted from topology. Use respective functions first to
delete all connected components (e.g. lines, transformers, loads, etc.). Use function
get_connected_components_from_bus() to get all connected components.

update_number_of_parallel_lines(lines_num_parallel)
Changes number of parallel lines and updates line attributes.

When number of parallel lines changes, attributes x, r, b, and s_nom have to be adapted, which is done in
this function.

Parameters
lines_num_parallel (pandas.Series) – Index contains identifiers of lines to update
as in index of lines_df and values of series contain corresponding new number of
parallel lines.

1.8. API 103

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.series.html

eDisGo Documentation, Release 0.2.0

change_line_type(lines, new_line_type)
Changes line type of specified lines to given new line type.

Be aware that this function replaces the lines by one line of the given line type. Lines must all be in the
same voltage level and the new line type must be a cable with technical parameters given in equipment
parameters.

Parameters
• lines (list(str)) – List of line names of lines to be changed to new line type.

• new_line_type (str) – Specifies new line type of lines. Line type must be a
cable with technical parameters given in “mv_cables” or “lv_cables” of equipment
data.

connect_to_mv(edisgo_object, comp_data, comp_type='generator')
Add and connect new generator, charging point or heat pump to MV grid topology.

This function creates a new bus the new component is connected to. The new bus is then connected to
the grid depending on the specified voltage level (given in comp_data parameter). Components of voltage
level 4 are connected to the HV/MV station. Components of voltage level 5 are connected to the nearest
MV bus or line. In case the component is connected to a line, the line is split at the point closest to the new
component (using perpendicular projection) and a new branch tee is added to connect the new component
to.

Parameters
• edisgo_object (EDisGo) –

• comp_data (dict) – Dictionary with all information on component. The dictio-
nary must contain all required arguments of method add_generator respectively
add_load , except the bus that is assigned in this function, and may contain all
other parameters of those methods. Additionally, the dictionary must contain the
voltage level to connect in key ‘voltage_level’ and the geolocation in key ‘geom’.
The voltage level must be provided as integer, with possible options being 4 (com-
ponent is connected directly to the HV/MV station) or 5 (component is connected
somewhere in the MV grid). The geolocation must be provided as Shapely Point
object.

• comp_type (str) – Type of added component. Can be ‘generator’, ‘charg-
ing_point’ or ‘heat_pump’. Default: ‘generator’.

Returns
The identifier of the newly connected component.

Return type
str

connect_to_lv(edisgo_object, comp_data, comp_type='generator', allowed_number_of_comp_per_bus=2)
Add and connect new generator, charging point or heat pump to LV grid topology.

This function connects the new component depending on the voltage level, and information on the MV/LV
substation ID, geometry and sector, all provided in the comp_data parameter. It connects

• Components with specified voltage level 6
– to MV/LV substation (a new bus is created for the new component, unless no geometry

data is available, in which case the new component is connected directly to the substa-
tion)

• Generators with specified voltage level 7
– with a nominal capacity of <=30 kW to LV loads of sector residential, if available

104 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://shapely.readthedocs.io/en/latest/manual.html#points
https://shapely.readthedocs.io/en/latest/manual.html#points
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

– with a nominal capacity of >30 kW to LV loads of sector retail, industrial or agricultural,
if available

– to random bus in the LV grid as fallback if no appropriate load is available
• Charging points with specified voltage level 7

– with sector ‘home’ to LV loads of sector residential, if available

– with sector ‘work’ to LV loads of sector retail, industrial or agricultural, if available,
otherwise

– with sector ‘public’ or ‘hpc’ to some bus in the grid that is not a house connection

– to random bus in the LV grid that is not a house connection if no appropriate load is
available (fallback)

• Heat pumps with specified voltage level 7
– with sector ‘individual_heating’ to LV loads

– with sector ‘individual_heating’ to some bus in the grid that is not a house connection

– to random bus in the LV grid that if no appropriate load is available (fallback)
In case no MV/LV substation ID is provided a random LV grid is chosen. In case the provided MV/LV
substation ID does not exist (i.e. in case of components in an aggregated load area), the new component is
directly connected to the HV/MV station (will be changed once generators in aggregated areas are treated
differently in ding0).

The number of components of the same type connected at one load is restricted by the parameter al-
lowed_number_of_comp_per_bus. If every possible load already has more than the allowed number then
the new component is directly connected to the MV/LV substation.

Parameters
• edisgo_object (EDisGo) –

• comp_data (dict) – Dictionary with all information on component. The dictio-
nary must contain all required arguments of method add_generator respectively
add_load , except the bus that is assigned in this function, and may contain all
other parameters of those methods. Additionally, the dictionary must contain the
voltage level to connect in key ‘voltage_level’ and may contain the geolocation in
key ‘geom’ and the LV grid ID to connect the component in key ‘mvlv_subst_id’.
The voltage level must be provided as integer, with possible options being 6 (com-
ponent is connected directly to the MV/LV substation) or 7 (component is con-
nected somewhere in the LV grid). The geolocation must be provided as Shapely
Point object and the LV grid ID as integer.

• comp_type (str) – Type of added component. Can be ‘generator’, ‘charg-
ing_point’ or ‘heat_pump’. Default: ‘generator’.

• allowed_number_of_comp_per_bus (int) – Specifies, how many components
of the same type are at most allowed to be placed at the same bus. Default: 2.

Returns
The identifier of the newly connected component.

Return type
str

1.8. API 105

https://docs.python.org/3/library/stdtypes.html#dict
https://shapely.readthedocs.io/en/latest/manual.html#points
https://shapely.readthedocs.io/en/latest/manual.html#points
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Notes

For the allocation, loads are selected randomly (sector-wise) using a predefined seed to ensure reproducibil-
ity.

to_graph()

Returns graph representation of the grid.
Returns

Graph representation of the grid as networkx Ordered Graph, where lines are repre-
sented by edges in the graph, and buses and transformers are represented by nodes.

Return type
networkx.Graph

to_geopandas(mode='mv')
Returns components as geopandas.GeoDataFrames.

Returns container with geopandas.GeoDataFrames containing all georeferenced components within the
grid.

Parameters
mode (str) – Return mode. If mode is “mv” the mv components are returned. If mode
is “lv” a generator with a container per lv grid is returned. Default: “mv”

Returns
Data container with GeoDataFrames containing all georeferenced components within
the grid(s).

Return type
GeoPandasGridContainer or list(GeoPandasGridContainer)

to_csv(directory)
Exports topology to csv files.

The following attributes are exported:
• ‘loads_df’ : Attribute loads_df is saved to loads.csv.
• ‘generators_df’ : Attribute generators_df is saved to generators.csv.
• ‘storage_units_df’ : Attribute storage_units_df is saved to storage_units.csv.
• ‘transformers_df’ : Attribute transformers_df is saved to transformers.csv.
• ‘transformers_hvmv_df’ : Attribute transformers_df is saved to transformers.csv.
• ‘lines_df’ : Attribute lines_df is saved to lines.csv.
• ‘buses_df’ : Attribute buses_df is saved to buses.csv.
• ‘switches_df’ : Attribute switches_df is saved to switches.csv.
• ‘grid_district’ : Attribute grid_district is saved to network.csv.

Attributes are exported in a way that they can be directly imported to pypsa.
Parameters

directory (str) – Path to save topology to.

from_csv(data_path, edisgo_obj, from_zip_archive=False)
Restores topology from csv files.

Parameters
• data_path (str) – Path to topology csv files or zip archive.

• edisgo_obj (EDisGo) –

• from_zip_archive (bool) – Set to True if data is archived in a zip archive.
Default: False.

106 Chapter 1. Contents

https://networkx.github.io/documentation/stable/reference/classes/graph.html#network.Graph
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

eDisGo Documentation, Release 0.2.0

check_integrity()

Check data integrity.

Checks for duplicated labels and isolated components. Further checks for very small impedances that can
cause stability problems in the power flow calculation and large line lengths that might be implausible.

1.8.3 edisgo.flex_opt package

edisgo.flex_opt.charging_strategies module

edisgo.flex_opt.charging_strategies.charging_strategy(edisgo_obj, strategy='dumb',
timestamp_share_threshold=0.2,
minimum_charging_capacity_factor=0.1)

Applies charging strategy to set EV charging time series at charging parks.

See apply_charging_strategy for more information.
Parameters

• edisgo_obj (EDisGo) –

• strategy (str) – Defines the charging strategy to apply. See strategy parameter
apply_charging_strategy for more information. Default: ‘dumb’.

• timestamp_share_threshold (float) – Percental threshold of the time required
at a time step for charging the vehicle. See timestamp_share_threshold parameter
apply_charging_strategy for more information. Default: 0.2.

• minimum_charging_capacity_factor (float) – Technical minimum charging
power of charging points in p.u. used in case of charging strategy ‘reduced’. See mini-
mum_charging_capacity_factor parameter apply_charging_strategy for more in-
formation. Default: 0.1.

edisgo.flex_opt.charging_strategies.harmonize_charging_processes_df(df, edisgo_obj, len_ts,
times-
tamp_share_threshold,
strategy=None, mini-
mum_charging_capacity_factor=0.1,
eta_cp=1.0)

Harmonizes the charging processes to prevent differences in the energy demand per charging strategy.
Parameters

• df (pandas.DataFrame) – Charging processes DataFrame.

• len_ts (int) – Length of the timeseries.

• timestamp_share_threshold (float) – See description in
charging_strategy().

• strategy (str) – See description in charging_strategy().

• minimum_charging_capacity_factor (float) – See description in
charging_strategy(). Default: 0.1.

• eta_cp (float) – Charging point efficiency. Default: 1.0.

1.8. API 107

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

edisgo.flex_opt.check_tech_constraints module

edisgo.flex_opt.check_tech_constraints.mv_line_load(edisgo_obj)
Checks for over-loading issues in MV network.

Parameters
edisgo_obj (EDisGo) –

Returns
Dataframe containing over-loaded MV lines, their maximum relative over-loading (maxi-
mum calculated current over allowed current) and the corresponding time step. Index of the
dataframe are the names of the over-loaded lines. Columns are ‘max_rel_overload’ contain-
ing the maximum relative over-loading as float, ‘time_index’ containing the corresponding
time step the over-loading occured in as pandas.Timestamp, and ‘voltage_level’ specifying
the voltage level the line is in (either ‘mv’ or ‘lv’).

Return type
pandas.DataFrame

Notes

Line over-load is determined based on allowed load factors for feed-in and load cases that are defined in the
config file ‘config_grid_expansion’ in section ‘grid_expansion_load_factors’.

edisgo.flex_opt.check_tech_constraints.lv_line_load(edisgo_obj)
Checks for over-loading issues in LV network.

Parameters
edisgo_obj (EDisGo) –

Returns
Dataframe containing over-loaded LV lines, their maximum relative over-loading (maximum
calculated current over allowed current) and the corresponding time step. Index of the
dataframe are the names of the over-loaded lines. Columns are ‘max_rel_overload’ contain-
ing the maximum relative over-loading as float, ‘time_index’ containing the corresponding
time step the over-loading occured in as pandas.Timestamp, and ‘voltage_level’ specifying
the voltage level the line is in (either ‘mv’ or ‘lv’).

Return type
pandas.DataFrame

Notes

Line over-load is determined based on allowed load factors for feed-in and load cases that are defined in the
config file ‘config_grid_expansion’ in section ‘grid_expansion_load_factors’.

edisgo.flex_opt.check_tech_constraints.lines_allowed_load(edisgo_obj, voltage_level)
Get allowed maximum current per line per time step

Parameters
• edisgo_obj (EDisGo) –

• voltage_level (str) – Grid level, allowed line load is returned for. Possible options
are “mv” or “lv”.

Returns
Dataframe containing the maximum allowed current per line and time step in kA. Index of the
dataframe are all time steps power flow analysis was conducted for of type pandas.Timestamp.
Columns are line names of all lines in the specified voltage level.

Return type
pandas.DataFrame

108 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

edisgo.flex_opt.check_tech_constraints.lines_relative_load(edisgo_obj, lines_allowed_load)
Calculates relative line load based on specified allowed line load.

Parameters
• edisgo_obj (EDisGo) –

• lines_allowed_load (pandas.DataFrame) – Dataframe containing the maximum al-
lowed current per line and time step in kA. Index of the dataframe are time steps of type
pandas.Timestamp and columns are line names.

Returns
Dataframe containing the relative line load per line and time step. Index and columns of the
dataframe are the same as those of parameter lines_allowed_load.

Return type
pandas.DataFrame

edisgo.flex_opt.check_tech_constraints.hv_mv_station_load(edisgo_obj)
Checks for over-loading of HV/MV station.

Parameters
edisgo_obj (EDisGo) –

Returns
Dataframe containing over-loaded HV/MV station, their apparent power at maximal over-
loading and the corresponding time step. Index of the dataframe is the representative of the
MVGrid. Columns are ‘s_missing’ containing the missing apparent power at maximal over-
loading in MVA as float and ‘time_index’ containing the corresponding time step the over-
loading occured in as pandas.Timestamp.

Return type
pandas.DataFrame

Notes

Over-load is determined based on allowed load factors for feed-in and load cases that are defined in the config
file ‘config_grid_expansion’ in section ‘grid_expansion_load_factors’.

edisgo.flex_opt.check_tech_constraints.mv_lv_station_load(edisgo_obj)
Checks for over-loading of MV/LV stations.

Parameters
edisgo_obj (EDisGo) –

Returns
Dataframe containing over-loaded MV/LV stations, their missing apparent power at maximal
over-loading and the corresponding time step. Index of the dataframe are the representatives of
the grids with over-loaded stations. Columns are ‘s_missing’ containing the missing apparent
power at maximal over-loading in MVA as float and ‘time_index’ containing the correspond-
ing time step the over-loading occured in as pandas.Timestamp.

Return type
pandas.DataFrame

1.8. API 109

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

Notes

Over-load is determined based on allowed load factors for feed-in and load cases that are defined in the config
file ‘config_grid_expansion’ in section ‘grid_expansion_load_factors’.

edisgo.flex_opt.check_tech_constraints.mv_voltage_deviation(edisgo_obj, voltage_levels='mv_lv')
Checks for voltage stability issues in MV network.

Returns buses with voltage issues and their maximum voltage deviation.
Parameters

• edisgo_obj (EDisGo) –

• voltage_levels (str) – Specifies which allowed voltage deviations to use. Possible
options are:

– ’mv_lv’ This is the default. The allowed voltage deviations for buses in the MV is
the same as for buses in the LV. Further, load and feed-in case are not distinguished.

– ’mv’ Use this to handle allowed voltage limits in the MV and LV topology differ-
ently. In that case, load and feed-in case are differentiated.

Returns
Dictionary with representative of MVGrid as key and a pandas.DataFrame with voltage devi-
ations from allowed lower or upper voltage limits, sorted descending from highest to lowest
voltage deviation, as value. Index of the dataframe are all buses with voltage issues. Columns
are ‘v_diff_max’ containing the maximum voltage deviation as float and ‘time_index’ con-
taining the corresponding time step the voltage issue occured in as pandas.Timestamp.

Return type
dict

Notes

Voltage issues are determined based on allowed voltage deviations defined in the config file ‘con-
fig_grid_expansion’ in section ‘grid_expansion_allowed_voltage_deviations’.

edisgo.flex_opt.check_tech_constraints.lv_voltage_deviation(edisgo_obj, mode=None,
voltage_levels='mv_lv')

Checks for voltage stability issues in LV networks.

Returns buses with voltage issues and their maximum voltage deviation.
Parameters

• edisgo_obj (EDisGo) –

• mode (None or str) – If None voltage at all buses in LV networks is checked. If mode
is set to ‘stations’ only voltage at bus bar is checked. Default: None.

• voltage_levels (str) – Specifies which allowed voltage deviations to use. Possible
options are:

– ’mv_lv’ This is the default. The allowed voltage deviations for buses in the LV
is the same as for buses in the MV. Further, load and feed-in case are not distin-
guished.

– ’lv’ Use this to handle allowed voltage limits in the MV and LV topology differ-
ently. In that case, load and feed-in case are differentiated.

Returns
Dictionary with representative of LVGrid as key and a pandas.DataFrame with voltage devi-
ations from allowed lower or upper voltage limits, sorted descending from highest to lowest

110 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

voltage deviation, as value. Index of the dataframe are all buses with voltage issues. Columns
are ‘v_diff_max’ containing the maximum voltage deviation as float and ‘time_index’ con-
taining the corresponding time step the voltage issue occured in as pandas.Timestamp.

Return type
dict

Notes

Voltage issues are determined based on allowed voltage deviations defined in the config file ‘con-
fig_grid_expansion’ in section ‘grid_expansion_allowed_voltage_deviations’.

edisgo.flex_opt.check_tech_constraints.voltage_diff(edisgo_obj, buses, v_dev_allowed_upper,
v_dev_allowed_lower)

Function to detect under- and overvoltage at buses.

The function returns both under- and overvoltage deviations in p.u. from the allowed lower and upper voltage
limit, respectively, in separate dataframes. In case of both under- and overvoltage issues at one bus, only the
highest voltage deviation is returned.

Parameters
• edisgo_obj (EDisGo) –

• buses (list(str)) – List of buses to check voltage deviation for.

• v_dev_allowed_upper (pandas.Series) – Series with time steps (of type pan-
das.Timestamp) power flow analysis was conducted for and the allowed upper limit
of voltage deviation for each time step as float in p.u..

• v_dev_allowed_lower (pandas.Series) – Series with time steps (of type pan-
das.Timestamp) power flow analysis was conducted for and the allowed lower limit of
voltage deviation for each time step as float in p.u..

Returns
• pandas.DataFrame – Dataframe with deviations from allowed lower voltage level.

Columns of the dataframe are all time steps power flow analysis was conducted for
of type pandas.Timestamp; in the index are all buses for which undervoltage was de-
tected. In case of a higher over- than undervoltage deviation for a bus, the bus does not
appear in this dataframe, but in the dataframe with overvoltage deviations.

• pandas.DataFrame – Dataframe with deviations from allowed upper voltage level.
Columns of the dataframe are all time steps power flow analysis was conducted for of
type pandas.Timestamp; in the index are all buses for which overvoltage was detected.
In case of a higher under- than overvoltage deviation for a bus, the bus does not appear
in this dataframe, but in the dataframe with undervoltage deviations.

edisgo.flex_opt.check_tech_constraints.check_ten_percent_voltage_deviation(edisgo_obj)
Checks if 10% criteria is exceeded.

Through the 10% criteria it is ensured that voltage is kept between 0.9 and 1.1 p.u.. In case of higher or lower
voltages a ValueError is raised.

Parameters
edisgo_obj (EDisGo) –

1.8. API 111

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html

eDisGo Documentation, Release 0.2.0

edisgo.flex_opt.costs module

edisgo.flex_opt.costs.grid_expansion_costs(edisgo_obj, without_generator_import=False)
Calculates topology expansion costs for each reinforced transformer and line in kEUR.

edisgo.flex_opt.costs.edisgo_obj

Type
EDisGo

edisgo.flex_opt.costs.without_generator_import

If True excludes lines that were added in the generator import to connect new generators to the topology
from calculation of topology expansion costs. Default: False.

Type
bool

Returns
DataFrame containing type and costs plus in the case of lines the line length and number of
parallel lines of each reinforced transformer and line. Index of the DataFrame is the name of
either line or transformer. Columns are the following:

type
[str] Transformer size or cable name

total_costs
[float] Costs of equipment in kEUR. For lines the line length and number of parallel
lines is already included in the total costs.

quantity
[int] For transformers quantity is always one, for lines it specifies the number of parallel
lines.

line_length
[float] Length of line or in case of parallel lines all lines in km.

voltage_level
[str {‘lv’ | ‘mv’ | ‘mv/lv’}] Specifies voltage level the equipment is in.

mv_feeder
[Line] First line segment of half-ring used to identify in which feeder the network
expansion was conducted in.

Return type
pandas.DataFrame<DataFrame>

Notes

Total network expansion costs can be obtained through self.grid_expansion_costs.total_costs.sum().

edisgo.flex_opt.costs.line_expansion_costs(edisgo_obj, lines_names)
Returns costs for earthworks and per added cable as well as voltage level for chosen lines in edisgo_obj.

Parameters
• edisgo_obj (EDisGo) – eDisGo object of which lines of lines_df are part

• lines_names (list of str) – List of names of evaluated lines
Returns

costs – Dataframe with names of lines as index and entries for ‘costs_earthworks’,
‘costs_cable’, ‘voltage_level’ for each line

112 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#bool

eDisGo Documentation, Release 0.2.0

Return type
pandas.DataFrame

edisgo.flex_opt.exceptions module

exception edisgo.flex_opt.exceptions.Error

Bases: Exception

Base class for exceptions in this module.

exception edisgo.flex_opt.exceptions.MaximumIterationError(message)
Bases: Error

Exception raised when maximum number of iterations in network reinforcement is exceeded.

message

Explanation of the error
Type

str

exception edisgo.flex_opt.exceptions.ImpossibleVoltageReduction(message)
Bases: Error

Exception raised when voltage issue cannot be solved.

message

Explanation of the error
Type

str

edisgo.flex_opt.heat_pump_operation module

edisgo.flex_opt.heat_pump_operation.operating_strategy(edisgo_obj, strategy='uncontrolled',
heat_pump_names=None)

Applies operating strategy to set electrical load time series of heat pumps.

See apply_heat_pump_operating_strategy for more information.
Parameters

• edisgo_obj (EDisGo) –

• strategy (str) – Defines the operating strategy to apply. See strategy parameter in
apply_heat_pump_operating_strategy for more information. Default: ‘uncon-
trolled’.

• heat_pump_names (list(str) or None) – Defines for which heat
pumps to apply operating strategy. See heat_pump_names parameter in
apply_heat_pump_operating_strategy for more information. Default: None.

1.8. API 113

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

edisgo.flex_opt.q_control module

edisgo.flex_opt.q_control.get_q_sign_generator(reactive_power_mode)
Get the sign of reactive power in generator sign convention.

In the generator sign convention the reactive power is negative in inductive operation (reactive_power_mode is
‘inductive’) and positive in capacitive operation (reactive_power_mode is ‘capacitive’).

Parameters
reactive_power_mode (str) – Possible options are ‘inductive’ and ‘capacitive’.

Returns
Sign of reactive power in generator sign convention.

Return type
int

edisgo.flex_opt.q_control.get_q_sign_load(reactive_power_mode)
Get the sign of reactive power in load sign convention.

In the load sign convention the reactive power is positive in inductive operation (reactive_power_mode is ‘in-
ductive’) and negative in capacitive operation (reactive_power_mode is ‘capacitive’).

Parameters
reactive_power_mode (str) – Possible options are ‘inductive’ and ‘capacitive’.

Returns
Sign of reactive power in load sign convention.

Return type
int

edisgo.flex_opt.q_control.fixed_cosphi(active_power, q_sign, power_factor)
Calculates reactive power for a fixed cosphi operation.

Parameters
• active_power (pandas.DataFrame) – Dataframe with active power time series.

Columns of the dataframe are names of the components and index of the dataframe
are the time steps reactive power is calculated for.

• q_sign (pandas.Series or int) – q_sign defines whether the reactive power is positive or
negative and must either be -1 or +1. In case q_sign is given as a series, the index must
contain the same component names as given in columns of parameter active_power.

• power_factor (pandas.Series or float) – Ratio of real to apparent power. In case
power_factor is given as a series, the index must contain the same component names
as given in columns of parameter active_power.

Returns
Dataframe with the same format as the active_power dataframe, containing the reactive power.

Return type
pandas.DataFrame

edisgo.flex_opt.reinforce_grid module

edisgo.flex_opt.reinforce_grid.reinforce_grid(edisgo, timesteps_pfa=None, copy_grid=False,
max_while_iterations=20, combined_analysis=False,
mode=None, without_generator_import=False)

Evaluates network reinforcement needs and performs measures.

This function is the parent function for all network reinforcements.
Parameters

• edisgo (EDisGo) – The eDisGo API object

114 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

• timesteps_pfa (str or pandas.DatetimeIndex or pandas.Timestamp) – timesteps_pfa
specifies for which time steps power flow analysis is conducted and therefore which time
steps to consider when checking for over-loading and over-voltage issues. It defaults to
None in which case all timesteps in timeseries.timeindex (see TimeSeries) are used.
Possible options are:

– None Time steps in timeseries.timeindex (see TimeSeries) are used.

– ’snapshot_analysis’ Reinforcement is conducted for two worst-case snapshots.
See edisgo.tools.tools.select_worstcase_snapshots() for further ex-
planation on how worst-case snapshots are chosen. Note: If you have large time
series choosing this option will save calculation time since power flow analysis is
only conducted for two time steps. If your time series already represents the worst-
case keep the default value of None because finding the worst-case snapshots takes
some time.

– pandas.DatetimeIndex or pandas.Timestamp Use this option to explicitly choose
which time steps to consider.

• copy_grid (bool) – If True reinforcement is conducted on a copied grid and discarded.
Default: False.

• max_while_iterations (int) – Maximum number of times each while loop is con-
ducted.

• combined_analysis (bool) – If True allowed voltage deviations for com-
bined analysis of MV and LV topology are used. If False different al-
lowed voltage deviations for MV and LV are used. See also config section
grid_expansion_allowed_voltage_deviations. If mode is set to ‘mv’ combined_analysis
should be False. Default: False.

• mode (str) – Determines network levels reinforcement is conducted for. Specify

– None to reinforce MV and LV network levels. None is the default.

– ’mv’ to reinforce MV network level only, neglecting MV/LV stations, and LV net-
work topology. LV load and generation is aggregated per LV network and directly
connected to the primary side of the respective MV/LV station.

– ’mvlv’ to reinforce MV network level only, including MV/LV stations, and ne-
glecting LV network topology. LV load and generation is aggregated per LV net-
work and directly connected to the secondary side of the respective MV/LV sta-
tion.

– ’lv’ to reinforce LV networks including MV/LV stations.

• without_generator_import (bool) – If True excludes lines that were added in the
generator import to connect new generators to the topology from calculation of topology
expansion costs. Default: False.

Returns
Returns the Results object holding network expansion costs, equipment changes, etc.

Return type
Results

1.8. API 115

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

eDisGo Documentation, Release 0.2.0

Notes

See Features in detail for more information on how network reinforcement is conducted.

edisgo.flex_opt.reinforce_measures module

edisgo.flex_opt.reinforce_measures.reinforce_mv_lv_station_overloading(edisgo_obj,
critical_stations)

Reinforce MV/LV substations due to overloading issues.

In a first step a parallel transformer of the same kind is installed. If this is not sufficient as many standard
transformers as needed are installed.

Parameters
• edisgo_obj (EDisGo) –

• critical_stations (pandas.DataFrame) – Dataframe containing over-loaded
MV/LV stations, their missing apparent power at maximal over-loading and the cor-
responding time step. Index of the dataframe are the representatives of the grids with
over-loaded stations. Columns are ‘s_missing’ containing the missing apparent power
at maximal over-loading in MVA as float and ‘time_index’ containing the correspond-
ing time step the over-loading occured in as pandas.Timestamp.

Returns
Dictionary with added and removed transformers in the form:

{'added': {'Grid_1': ['transformer_reinforced_1',
...,
'transformer_reinforced_x'],

'Grid_10': ['transformer_reinforced_10']
},

'removed': {'Grid_1': ['transformer_1']}
}

Return type
dict

edisgo.flex_opt.reinforce_measures.reinforce_hv_mv_station_overloading(edisgo_obj,
critical_stations)

Reinforce HV/MV station due to overloading issues.

In a first step a parallel transformer of the same kind is installed. If this is not sufficient as many standard
transformers as needed are installed.

Parameters
• edisgo_obj (EDisGo) –

• critical_stations (pandas:pandas.DataFrame<DataFrame>) – Dataframe con-
taining over-loaded HV/MV stations, their missing apparent power at maximal over-
loading and the corresponding time step. Index of the dataframe are the representatives
of the grids with over-loaded stations. Columns are ‘s_missing’ containing the missing
apparent power at maximal over-loading in MVA as float and ‘time_index’ containing
the corresponding time step the over-loading occured in as pandas.Timestamp.

Returns
Dictionary with added and removed transformers in the form:

116 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html

eDisGo Documentation, Release 0.2.0

{'added': {'Grid_1': ['transformer_reinforced_1',
...,
'transformer_reinforced_x'],

'Grid_10': ['transformer_reinforced_10']
},

'removed': {'Grid_1': ['transformer_1']}
}

Return type
dict

edisgo.flex_opt.reinforce_measures.reinforce_mv_lv_station_voltage_issues(edisgo_obj,
critical_stations)

Reinforce MV/LV substations due to voltage issues.

A parallel standard transformer is installed.
Parameters

• edisgo_obj (EDisGo) –

• critical_stations (dict) – Dictionary with representative of LVGrid as key and a
pandas.DataFrame with station’s voltage deviation from allowed lower or upper voltage
limit as value. Index of the dataframe is the station with voltage issues. Columns are
‘v_diff_max’ containing the maximum voltage deviation as float and ‘time_index’ con-
taining the corresponding time step the voltage issue occured in as pandas.Timestamp.

Returns
Dictionary with added transformers in the form:

{'added': {'Grid_1': ['transformer_reinforced_1',
...,
'transformer_reinforced_x'],

'Grid_10': ['transformer_reinforced_10']
}

}

Return type
dict

edisgo.flex_opt.reinforce_measures.reinforce_lines_voltage_issues(edisgo_obj, grid, crit_nodes)
Reinforce lines in MV and LV topology due to voltage issues.

Parameters
• edisgo_obj (EDisGo) –

• grid (MVGrid or LVGrid) –

• crit_nodes (pandas.DataFrame) – Dataframe with all nodes with voltage issues in the
grid and their maximal deviations from allowed lower or upper voltage limits sorted de-
scending from highest to lowest voltage deviation (it is not distinguished between over-
or undervoltage). Columns of the dataframe are ‘v_diff_max’ containing the maximum
absolute voltage deviation as float and ‘time_index’ containing the corresponding time
step the voltage issue occured in as pandas.Timestamp. Index of the dataframe are the
names of all buses with voltage issues.

Returns
Dictionary with name of lines as keys and the corresponding number of lines added as values.

Return type
dict

1.8. API 117

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.2.0

Notes

Reinforce measures:

1. Disconnect line at 2/3 of the length between station and critical node farthest away from the station and install
new standard line 2. Install parallel standard line

In LV grids only lines outside buildings are reinforced; loads and generators in buildings cannot be directly
connected to the MV/LV station.

In MV grids lines can only be disconnected at LV stations because they have switch disconnectors needed to
operate the lines as half rings (loads in MV would be suitable as well because they have a switch bay (Schaltfeld)
but loads in dingo are only connected to MV busbar). If there is no suitable LV station the generator is directly
connected to the MV busbar. There is no need for a switch disconnector in that case because generators don’t
need to be n-1 safe.

edisgo.flex_opt.reinforce_measures.reinforce_lines_overloading(edisgo_obj, crit_lines)
Reinforce lines in MV and LV topology due to overloading.

Parameters
• edisgo_obj (EDisGo) –

• crit_lines (pandas.DataFrame) – Dataframe containing over-loaded lines, their max-
imum relative over-loading (maximum calculated current over allowed current) and
the corresponding time step. Index of the dataframe are the names of the over-loaded
lines. Columns are ‘max_rel_overload’ containing the maximum relative over-loading
as float, ‘time_index’ containing the corresponding time step the over-loading occured
in as pandas.Timestamp, and ‘voltage_level’ specifying the voltage level the line is in
(either ‘mv’ or ‘lv’).

Returns
Dictionary with name of lines as keys and the corresponding number of lines added as values.

Return type
dict

Notes

Reinforce measures:
1. Install parallel line of the same type as the existing line (Only if line is a cable, not an overhead line.

Otherwise a standard equipment cable is installed right away.)
2. Remove old line and install as many parallel standard lines as needed.

1.8.4 edisgo.io package

edisgo.io.ding0_import module

edisgo.io.ding0_import.import_ding0_grid(path, edisgo_obj)
Import an eDisGo network topology from Ding0 data.

This import method is specifically designed to load network topology data in the format as Ding0 provides it via
csv files.

Parameters
• path (str) – Path to ding0 network csv files.

• edisgo_obj (EDisGo) – The eDisGo data container object.

118 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/openego/ding0
https://github.com/openego/ding0
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

edisgo.io.ding0_import.remove_1m_end_lines(edisgo)
Method to remove 1m end lines to reduce size of edisgo object.

Short lines inside houses are removed in this function, including the end node. Components that were originally
connected to the end node are reconnected to the upstream node.

This function will become obsolete once it is changed in the ding0 export.
Parameters

edisgo (EDisGo) –
Returns

edisgo – EDisGo object where 1m end lines are removed from topology.
Return type

EDisGo

edisgo.io.electromobility_import module

edisgo.io.electromobility_import.import_electromobility(edisgo_obj, simbev_directory,
tracbev_directory, **kwargs)

Import electromobility data from SimBEV and TracBEV.
Parameters

• edisgo_obj (EDisGo) –

• simbev_directory (str or pathlib.PurePath) – SimBEV directory holding
SimBEV data.

• tracbev_directory (str or pathlib.PurePath) – TracBEV directory holding
TracBEV data.

• kwargs – Kwargs may contain any further attributes you want to specify.

gc_to_car_rate_home
[float] Specifies the minimum rate between potential charging parks points for the
use case “home” and the total number of cars. Default 0.5 .

gc_to_car_rate_work
[float] Specifies the minimum rate between potential charging parks points for the
use case “work” and the total number of cars. Default 0.25 .

gc_to_car_rate_public
[float] Specifies the minimum rate between potential charging parks points for the
use case “public” and the total number of cars. Default 0.1 .

gc_to_car_rate_hpc
[float] Specifies the minimum rate between potential charging parks points for the
use case “hpc” and the total number of cars. Default 0.005 .

mode_parking_times
[str] If the mode_parking_times is set to “frugal” only parking times with any
charging demand are imported. Default “frugal”.

charging_processes_dir
[str] Charging processes sub-directory. Default None.

simbev_config_file
[str] Name of the simbev config file. Default “metadata_simbev_run.json”.

edisgo.io.electromobility_import.read_csvs_charging_processes(csv_path, mode='frugal',
csv_dir=None)

1.8. API 119

https://github.com/rl-institut/simbev
https://github.com/rl-institut/tracbev
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath

eDisGo Documentation, Release 0.2.0

Reads all CSVs in a given path and returns a DataFrame with all SimBEV charging processes.
Parameters

• csv_path (str) – Main path holding SimBEV output data

• mode (str) – Returns all information if None. Returns only rows with charging demand
greater than 0 if “frugal”. Default: “frugal”.

• csv_dir (str) – Optional sub-directory holding charging processes CSVs under path.
Default: None.

Returns
DataFrame with AGS, car ID, trip destination, charging use case (private or public), netto
charging capacity, charging demand, charge start, charge end, potential charging park ID and
charging point ID.

Return type
pandas.DataFrame

edisgo.io.electromobility_import.read_simbev_config_df(path, edisgo_obj, sim-
bev_config_file='metadata_simbev_run.json')

Get SimBEV config data.
Parameters

• path (str) – Main path holding SimBEV output data.

• edisgo_obj (EDisGo) –

• simbev_config_file (str) – SimBEV config file name. Default: “meta-
data_simbev_run.json”.

Returns
DataFrame with used random seed, used threads, stepsize in minutes, year, scenarette, simu-
lated days, maximum number of cars per AGS, completed standing times and time series per
AGS and used ramp up data CSV.

Return type
pandas.DataFrame

edisgo.io.electromobility_import.read_gpkg_potential_charging_parks(path, edisgo_obj,
**kwargs)

Get GeoDataFrame with all TracBEV potential charging parks.
Parameters

• path (str) – Main path holding SimBEV output data

• edisgo_obj (EDisGo) –
Returns

GeoDataFrame with AGS, charging use case (home, work, public or hpc), user centric weight
and geometry.

Return type
geopandas.geodataframe

edisgo.io.electromobility_import.distribute_charging_demand(edisgo_obj, **kwargs)
Distribute charging demand from SimBEV onto potential charging parks from TracBEV.

Parameters
• edisgo_obj (EDisGo) –

• kwargs – Kwargs may contain any further attributes you want to specify.

mode
[str] Distribution mode. If the mode is set to “user_friendly” only the simbev

120 Chapter 1. Contents

https://github.com/rl-institut/simbev
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/rl-institut/simbev
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/rl-institut/tracbev
https://docs.python.org/3/library/stdtypes.html#str
https://geopandas.org/en/stable/docs/reference/api/geopandas.geodataframe.html

eDisGo Documentation, Release 0.2.0

weights are used for the distribution. If the mode is “grid_friendly” also grid
conditions are respected. Default “user_friendly”.

generators_weight_factor
[float] Weighting factor of the generators weight within an LV grid in comparison
to the loads weight. Default 0.5.

distance_weight
[float] Weighting factor for the distance between a potential charging park and its
nearest substation in comparison to the combination of the generators and load
factors of the LV grids. Default 1 / 3.

user_friendly_weight
[float] Weighting factor of the user friendly weight in comparison to the grid
friendly weight. Default 0.5.

edisgo.io.electromobility_import.get_weights_df(edisgo_obj, potential_charging_park_indices,
**kwargs)

Get weights per potential charging point for a given set of grid connection indices.
Parameters

• edisgo_obj (EDisGo) –

• potential_charging_park_indices (list) – List of potential charging parks in-
dices

• mode (str) – Only use user friendly weights (“user_friendly”) or combine with grid
friendly weights (“grid_friendly”). Default: “user_friendly”.

• user_friendly_weight (float) – Weight of user friendly weight if mode
“grid_friendly”. Default: 0.5.

• distance_weight (float) – Grid friendly weight is a combination of the installed
capacity of generators and loads within a LV grid and the distance towards the nearest
substation. This parameter sets the weight for the distance parameter. Default: 1/3.

Returns
DataFrame with numeric weights

Return type
pandas.DataFrame

edisgo.io.electromobility_import.normalize(weights_df)
Normalize a given DataFrame so that its sum equals 1 and return a flattened Array.

Parameters
weights_df (pandas.DataFrame) – DataFrame with single numeric column

Returns
Array with normalized weights

Return type
Numpy 1-D array

edisgo.io.electromobility_import.combine_weights(potential_charging_park_indices,
designated_charging_point_capacity_df,
weights_df)

Add designated charging capacity weights into the initial weights and normalize weights
Parameters

• potential_charging_park_indices (list) – List of potential charging parks in-
dices

• designated_charging_point_capacity_df – pandas.DataFrame DataFrame with
designated charging point capacity per potential charging park

1.8. API 121

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

• weights_df (pandas.DataFrame) – DataFrame with initial user or combined weights
Returns

Array with normalized weights
Return type

Numpy 1-D array

edisgo.io.electromobility_import.weighted_random_choice(edisgo_obj,
potential_charging_park_indices, car_id,
destination, charging_point_id,
normalized_weights, rng=None)

Weighted random choice of a potential charging park. Setting the chosen values into charging_processes_df
Parameters

• edisgo_obj (EDisGo) –

• potential_charging_park_indices (list) – List of potential charging parks in-
dices

• car_id (int) – Car ID

• destination (str) – Trip destination

• charging_point_id (int) – Charging Point ID

• normalized_weights (Numpy 1-D array) – Array with normalized weights

• rng (Numpy random generator) – If None a random generator with
seed=charging_point_id is initialized

Returns
Chosen Charging Park ID

Return type
int

edisgo.io.electromobility_import.distribute_private_charging_demand(edisgo_obj)
Distributes all private charging processes. Each car gets its own private charging point if a charging process takes
place.

Parameters
edisgo_obj (EDisGo) –

edisgo.io.electromobility_import.distribute_public_charging_demand(edisgo_obj, **kwargs)
Distributes all public charging processes. For each process it is checked if a matching charging point exists to
minimize the number of charging points.

Parameters
edisgo_obj (EDisGo) –

edisgo.io.electromobility_import.determine_grid_connection_capacity(total_charging_point_capacity,
lower_limit=0.3,
upper_limit=1.0,
minimum_factor=0.45)

edisgo.io.electromobility_import.integrate_charging_parks(edisgo_obj)
Integrates all designated charging parks into the grid.

The charging time series at each charging park are not set in this function.
Parameters

edisgo_obj (EDisGo) –

122 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

eDisGo Documentation, Release 0.2.0

edisgo.io.generators_import module

edisgo.io.generators_import.oedb(edisgo_object, generator_scenario, **kwargs)
Gets generator park for specified scenario from oedb and integrates them into the grid.

The importer uses SQLAlchemy ORM objects. These are defined in ego.io.

For further information see also import_generators.
Parameters

• edisgo_object (EDisGo) –

• generator_scenario (str) – Scenario for which to retrieve generator data. Possible
options are ‘nep2035’ and ‘ego100’.

• remove_decommissioned (bool) – If True, removes generators from network that are
not included in the imported dataset (=decommissioned). Default: True.

• update_existing (bool) – If True, updates capacity of already existing generators
to capacity specified in the imported dataset. Default: True.

• p_target (dict or None) – Per default, no target capacity is specified and generators
are expanded as specified in the respective scenario. However, you may want to use
one of the scenarios but have slightly more or less generation capacity than given in
the respective scenario. In that case you can specify the desired target capacity per
technology type using this input parameter. The target capacity dictionary must have
technology types (e.g. ‘wind’ or ‘solar’) as keys and corresponding target capacities in
MW as values. If a target capacity is given that is smaller than the total capacity of all
generators of that type in the future scenario, only some of the generators in the future
scenario generator park are installed, until the target capacity is reached. If the given
target capacity is greater than that of all generators of that type in the future scenario,
then each generator capacity is scaled up to reach the target capacity. Be careful to not
have much greater target capacities as this will lead to unplausible generation capacities
being connected to the different voltage levels. Also be aware that only technologies
specified in the dictionary are expanded. Other technologies are kept the same. Default:
None.

• allowed_number_of_comp_per_lv_bus (int) – Specifies, how many generators are
at most allowed to be placed at the same LV bus. Default: 2.

edisgo.io.pypsa_io module

This module provides tools to convert eDisGo representation of the network topology to PyPSA data model. Call
to_pypsa() to retrieve the PyPSA network container.

edisgo.io.pypsa_io.to_pypsa(edisgo_object, mode=None, timesteps=None, **kwargs)
Convert grid to PyPSA.Network representation.

You can choose between translation of the MV and all underlying LV grids (mode=None (default)), the MV
network only (mode=’mv’ or mode=’mvlv’) or a single LV network (mode=’lv’).

Parameters
• edisgo_object (EDisGo) – EDisGo object containing grid topology and time series

information.

• mode (str) – Determines network levels that are translated to PyPSA.Network. See
mode parameter in to_pypsa for more information.

1.8. API 123

https://github.com/openego/ego.io/tree/dev/egoio/db_tables/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://pypsa.readthedocs.io/en/latest/components.html#network
https://docs.python.org/3/library/stdtypes.html#str
https://pypsa.readthedocs.io/en/latest/components.html#network

eDisGo Documentation, Release 0.2.0

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – See timesteps parameter
in to_pypsa for more information.

:param See other parameters in to_pypsa for more: :param information.:
Returns

PyPSA.Network representation.
Return type

PyPSA.Network

edisgo.io.pypsa_io.set_seed(edisgo_obj, pypsa_network)
Set initial guess for the Newton-Raphson algorithm.

In PyPSA an initial guess for the Newton-Raphson algorithm used in the power flow analysis can be provided to
speed up calculations. For PQ buses, which besides the slack bus, is the only bus type in edisgo, voltage magni-
tude and angle need to be guessed. If the power flow was already conducted for the required time steps and buses,
the voltage magnitude and angle results from previously conducted power flows stored in pfa_v_mag_pu_seed
and pfa_v_ang_seed are used as the initial guess. Always the latest power flow calculation is used and only
results from power flow analyses including the MV level are considered, as analysing single LV grids is currently
not in the focus of edisgo and does not require as much speeding up, as analysing single LV grids is usually
already quite quick. If for some buses or time steps no power flow results are available, default values are used.
For the voltage magnitude the default value is 1 and for the voltage angle 0.

Parameters
• edisgo_obj (EDisGo) –

• pypsa_network (pypsa.Network) – Pypsa network in which seed is set.

edisgo.io.pypsa_io.process_pfa_results(edisgo, pypsa, timesteps, dtype='float')
Passing power flow results from PyPSA to Results.

Parameters
• edisgo (EDisGo) –

• pypsa (pypsa.Network) – The PyPSA Network container

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Time steps for which latest
power flow analysis was conducted and for which to retrieve pypsa results.

Notes

P and Q are returned from the line ending/transformer side with highest apparent power S, exemplary written as

𝑆𝑚𝑎𝑥 = 𝑚𝑎𝑥(
√︁

𝑃 2
0 + 𝑄2

0,
√︁

𝑃 2
1 + 𝑄2

1) 𝑃 = 𝑃0𝑃1(𝑆𝑚𝑎𝑥) 𝑄 = 𝑄0𝑄1(𝑆𝑚𝑎𝑥)

See also:
Results, analysis

edisgo.io.timeseries_import module

edisgo.io.timeseries_import.feedin_oedb(config_data, weather_cell_ids, timeindex)
Import feed-in time series data for wind and solar power plants from the OpenEnergy DataBase.

Parameters
• config_data (Config) – Configuration data from config files, relevant for information

of which data base table to retrieve feed-in data from.

124 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://pypsa.readthedocs.io/en/latest/components.html#network
https://pypsa.readthedocs.io/en/latest/components.html#network
https://pypsa.readthedocs.io/en/latest/index.html/
https://pypsa.readthedocs.io/en/latest/components.html#network
https://pypsa.readthedocs.io/en/latest/components.html#network
https://www.pypsa.org/doc/components.html#network
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://openenergy-platform.org/dataedit/schemas

eDisGo Documentation, Release 0.2.0

• weather_cell_ids (list(int)) – List of weather cell id’s (integers) to obtain feed-
in data for.

• timeindex (pandas.DatetimeIndex) – Feed-in data is currently only provided for
weather year 2011. If timeindex contains a different year, the data is reindexed.

Returns
DataFrame with hourly time series for active power feed-in per generator type (wind or solar,
in column level 0) and weather cell (in column level 1), normalized to a capacity of 1 MW.

Return type
pandas.DataFrame

edisgo.io.timeseries_import.load_time_series_demandlib(config_data, timeindex)
Get normalized sectoral electricity load time series using the demandlib.

Resulting electricity load profiles hold time series of hourly conventional electricity demand for the sectors res-
idential, retail, agricultural and industrial. Time series are normalized to a consumption of 1 MWh per year.

Parameters
• config_data (Config) – Configuration data from config files, relevant for industrial

load profiles.

• timeindex (pandas.DatetimeIndex) – Timesteps for which to generate load time series.
Returns

DataFrame with conventional electricity load time series for sectors residential, retail, agri-
cultural and industrial. Index is a pandas.DatetimeIndex. Columns hold the sector type.

Return type
pandas.DataFrame

edisgo.io.timeseries_import.cop_oedb(config_data, weather_cell_ids=None, timeindex=None)
Get COP (coefficient of performance) time series data from the OpenEnergy DataBase.

Parameters
• config_data (Config) – Configuration data from config files, relevant for information

of which data base table to retrieve COP data from.

• weather_cell_ids (list(int)) – List of weather cell id’s (integers) to obtain COP
data for.

• timeindex (pandas.DatetimeIndex) – COP data is only provided for the weather year
2011. If timeindex contains a different year, the data is reindexed.

Returns
DataFrame with hourly COP time series in p.u. per weather cell.

Return type
pandas.DataFrame

edisgo.io.timeseries_import.heat_demand_oedb(config_data, building_ids, timeindex=None)
Get heat demand time series data from the OpenEnergy DataBase.

Parameters
• config_data (Config) – Configuration data from config files, relevant for information

of which data base table to retrieve data from.

• building_ids (list(int)) – List of building IDs to obtain heat demand for.

• timeindex (pandas.DatetimeIndex) – Heat demand data is only provided for the
weather year 2011. If timeindex contains a different year, the data is reindexed.

Returns
DataFrame with hourly heat demand time series in MW per building ID.

Return type
pandas.DataFrame

1.8. API 125

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/oemof/demandlib/
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://openenergy-platform.org/dataedit/schemas
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://openenergy-platform.org/dataedit/schemas
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

eDisGo Documentation, Release 0.2.0

1.8.5 edisgo.opf package

edisgo.opf.run_mp_opf module

edisgo.opf.run_mp_opf.convert(o)
Helper function for json dump, as int64 cannot be dumped.

edisgo.opf.run_mp_opf.bus_names_to_ints(pypsa_network, bus_names)
This remaps a list of eDisGo bus names from Strings to Integers.

Integer indices are needed for the optimization. The result uses one-based indexing, as it gets passed on to Julia
directly.

Parameters
• pypsa_network –

• bus_names (list(str)) – List of bus names to be remapped to indices.
Returns

List of one-based bus indices.
Return type

list(int)

edisgo.opf.run_mp_opf.run_mp_opf(edisgo_network, timesteps=None, storage_series=[], **kwargs)
Parameters

• edisgo_network –

• timesteps (pandas.DatetimeIndex<DatetimeIndex> or pan-
das.Timestamp<Timestamp>) –

• **kwargs – “scenario” : “nep” # objective function “objective”: “nep”, # chosen re-
laxation “relaxation”: “none”, # upper bound on network expansion “max_exp”: 10, #
number of time steps considered in optimization “time_horizon”: 2, # length of time
step in hours “time_elapsed”: 1.0, # storage units are considered “storage_units”: False,
positioning of storage units, if empty list, all buses are potential positions # of storage
units and # capacity is optimized “storage_buses”: [], # total storage capacity in the
network “total_storage_capacity”: 0.0, # Requirements for curtailment in every time
step is considered “storage_series”: [], # Time series for storage operation required by
upper grid layer “curtailment_requirement”: False, # List of total curtailment for each
time step, len(list)== “time_horizon” “curtailment_requirement_series”: [], # An over-
all allowance of curtailment is considered “curtailment_allowance”: False, # Maximal
allowed curtailment over entire time horizon, # DEFAULT: “3percent”=> 3% of total
RES generation in time horizon may be # curtailed, else: Float “curtailment_total”:
“3percent”, “results_path”: “opf_solutions” # path to where OPF results are stored

edisgo.opf.timeseries_reduction module

edisgo.opf.timeseries_reduction.get_steps_curtailment(edisgo_obj, percentage=0.5)
Get the time steps with the most critical violations for curtailment optimization.

Parameters
• edisgo_obj (EDisGo) – The eDisGo API object

• percentage (float) – The percentage of most critical time steps to select
Returns

the reduced time index for modeling curtailment

126 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

Return type
pandas.DatetimeIndex

edisgo.opf.timeseries_reduction.get_steps_storage(edisgo_obj, window=5)
Get the most critical time steps from series for storage problems.

Parameters
• edisgo_obj (EDisGo) – The eDisGo API object

• window (int) – The additional hours to include before and after each critical time step.
Returns

the reduced time index for modeling storage
Return type

pandas.DatetimeIndex

edisgo.opf.timeseries_reduction.get_linked_steps(cluster_params, num_steps=24, keep_steps=[])
Use provided data to identify representative time steps and create mapping Dict that can be passed to optimization

Parameters
• cluster_params (pandas.DataFrame) – Time series containing the parameters to be

considered for distance between points.

• num_steps (int) – The number of representative time steps to be selected.

• keep_steps (Iterable of the same type as cluster_params.index) –
Time steps to retain with full resolution, regardless of clustering result.

Returns
Dictionary where each represented time step is a key and its representative time step is a value.

Return type
dict

edisgo.opf.results package

edisgo.opf.results.opf_expand_network.expand_network(edisgo, tolerance=1e-06)
Apply network expansion factors that were obtained by optimization to eDisGo MVGrid

Parameters
• edisgo (EDisGo) –

• tolerance (float) – The acceptable margin with which an expansion factor can de-
viate from the nearest Integer before it gets rounded up

edisgo.opf.results.opf_expand_network.grid_expansion_costs(opf_results, tolerance=1e-06)
Calculates grid expansion costs from OPF.

As grid expansion is conducted continuously number of expanded lines is determined by simply rounding up
(including some tolerance).

Parameters
• opf_results (OPFResults class) –

• tolerance (float) –
Returns

Grid expansion costs determined by OPF
Return type

float

1.8. API 127

https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

edisgo.opf.results.opf_expand_network.integrate_storage_units(edisgo, min_storage_size=0.3,
timeseries=True, as_load=False)

Integrates storage units from OPF into edisgo grid topology.

Storage units that are too small to be connected to the MV grid or that are not used (time series contains only
zeros) are discarded.

Parameters
• edisgo (EDisGo object) –

• min_storage_size (float) – Minimal storage size in MW needed to connect storage
unit to MV grid. Smaller storage units are ignored.

• timeseries (bool) – If True time series is added to component.

• as_load (bool) – If True, storage is added as load to the edisgo topology. This is
temporarily needed as the OPF cannot handle storage units from edisgo yet. This way,
storage units with fixed position and time series can be considered in OPF.

Returns
First return value contains the names of the added storage units and the second return value
the capacity of storage units that were too small to connect to the MV grid or not used.

Return type
list(str), float

edisgo.opf.results.opf_expand_network.get_curtailment_per_node(edisgo, curtailment_ts=None,
tolerance=0.001)

Gets curtailed power per node.

As LV generators are aggregated at the corresponding LV station curtailment is not determined per generator but
per node.

This function also checks if curtailment requirements were met by OPF in case the curtailment requirement time
series is provided.

Parameters
• edisgo (EDisGo object) –

• curtailment_ts (pd.Series) – Series with curtailment requirement per time step.
Only needs to be provided if you want to check if requirement was met.

• tolerance (float) – Tolerance for checking if curtailment requirement and curtailed
power are equal.

Returns
DataFrame with curtailed power in MW per node. Column names correspond to nodes and
index to time steps calculated.

Return type
pd.DataFrame

edisgo.opf.results.opf_expand_network.get_load_curtailment_per_node(edisgo, tolerance=0.001)
Gets curtailed load per node.

Parameters
• edisgo (EDisGo object) –

• tolerance (float) – Tolerance for checking if curtailment requirement and curtailed
power are equal.

Returns
DataFrame with curtailed power in MW per node. Column names correspond to nodes and
index to time steps calculated.

128 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

Return type
pd.DataFrame

edisgo.opf.results.opf_expand_network.integrate_curtailment_as_load(edisgo,
curtailment_per_node)

Adds load curtailed power per node as load

This is done because curtailment results from OPF are not given per generator but per node (as LV generators
are aggregated per LV grid).

Parameters
• edisgo –

• curtailment_per_node –
Returns

edisgo.opf.results.opf_result_class.read_from_json(edisgo_obj, path, mode='mv')
Read optimization results from json file.

This reads the optimization results directly from a JSON result file without carrying out the optimization process.
Parameters

• edisgo_obj (EDisGo) – An edisgo object with the same topology that the optimization
was run on.

• path (str) – Path to the optimization result JSON file.

• mode (str) – Voltage level, currently only supports “mv”

class edisgo.opf.results.opf_result_class.LineVariables

Bases: object

class edisgo.opf.results.opf_result_class.BusVariables

Bases: object

class edisgo.opf.results.opf_result_class.GeneratorVariables

Bases: object

class edisgo.opf.results.opf_result_class.LoadVariables

Bases: object

class edisgo.opf.results.opf_result_class.StorageVariables

Bases: object

class edisgo.opf.results.opf_result_class.OPFResults

Bases: object

set_solution(solution_name, pypsa_net)

read_solution_file(solution_name)

dump_solution_file(solution_name=[])

set_solution_to_results(pypsa_net)

set_line_variables(pypsa_net)

set_bus_variables(pypsa_net)

set_gen_variables(pypsa_net)

1.8. API 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

eDisGo Documentation, Release 0.2.0

set_load_variables(pypsa_net)

set_strg_variables(pypsa_net)

edisgo.opf.util package

edisgo.opf.util.plot_solutions.plot_line_expansion(edisgo_obj, timesteps)

edisgo.opf.util.scenario_settings.opf_settings()

1.8.6 edisgo.tools package

edisgo.tools.config module

This file is part of eDisGo, a python package for distribution network analysis and optimization.

It is developed in the project open_eGo: https://openegoproject.wordpress.com

eDisGo lives on github: https://github.com/openego/edisgo/ The documentation is available on RTD: http://edisgo.
readthedocs.io

Based on code by oemof developing group

This module provides a highlevel layer for reading and writing config files.

class edisgo.tools.config.Config(**kwargs)
Bases: object

Container for all configurations.
Parameters

• config_path (None or str or :dict) – Path to the config directory. Options are:

– ’default’ (default)
If config_path is set to ‘default’, the provided default config files are used
directly.

– str
If config_path is a string, configs will be loaded from the directory specified
by config_path. If the directory does not exist, it is created. If config files
don’t exist, the default config files are copied into the directory.

– dict
A dictionary can be used to specify different paths to the different config files.
The dictionary must have the following keys:

∗ ’config_db_tables’

∗ ’config_grid’

∗ ’config_grid_expansion’

∗ ’config_timeseries’

Values of the dictionary are paths to the corresponding config file. In contrast
to the other options, the directories and config files must exist and are not
automatically created.

130 Chapter 1. Contents

https://openegoproject.wordpress.com
https://github.com/openego/edisgo/
http://edisgo.readthedocs.io
http://edisgo.readthedocs.io
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

– None
If config_path is None, configs are loaded from the edisgo default config
directory ($HOME$/.edisgo). If the directory does not exist, it is created. If
config files don’t exist, the default config files are copied into the directory.

Default: “default”.

• from_json (bool) – Set to True to load config data from json file. In that case the json
file is assumed to be located in path specified through config_path. Per default this is
set to False in which case config data is loaded from cfg files. Default: False.

• json_filename (str) – Filename of the json file. If None, it is loaded from file with
name “configs.json”. Default: None.

• from_zip_archive (bool) – Set to True to load json config file from zip archive.
Default: False.

Notes

The Config object can be used like a dictionary. See example on how to use it.

Examples

Create Config object from default config files

>>> from edisgo.tools.config import Config
>>> config = Config()

Get reactive power factor for generators in the MV network

>>> config['reactive_power_factor']['mv_gen']

from_cfg(config_path=None)
Load config files.

Parameters
config_path (None or str or dict) – See class definition for more information.

Returns
eDisGo configuration data from config files.

Return type
collections.OrderedDict

to_json(directory, filename=None)
Saves config data to json file.

Parameters
• directory (str) – Directory, the json file is saved to.

• filename (str or None) – Filename the json file is saved under. If None, it is
saved under the filename “configs.json”. Default: None.

from_json(directory, filename=None, from_zip_archive=False)
Imports config data from json file as dictionary.

Parameters
• directory (str) – Directory, the json file is loaded from.

1.8. API 131

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• filename (str or None) – Filename of the json file. If None, it is loaded from
file with name “configs.json”. Default: None.

• from_zip_archive (bool) – Set to True if data is archived in a zip archive.
Default: False.

Returns
Dictionary with config data loaded from json file.

Return type
dict

edisgo.tools.config.load_config(filename, config_dir=None, copy_default_config=True)
Loads the specified config file.

Parameters
• filename (str) – Config file name, e.g. ‘config_grid.cfg’.

• config_dir (str, optional) – Path to config file. If None uses default edisgo config
directory specified in config file ‘config_system.cfg’ in section ‘user_dirs’ by subsec-
tions ‘root_dir’ and ‘config_dir’. Default: None.

• copy_default_config (bool) – If True copies a default config file into config_dir if
the specified config file does not exist. Default: True.

edisgo.tools.config.get(section, key)
Returns the value of a given key of a given section of the main config file.

Parameters
• section (str) –

• key (str) –
Returns

The value which will be casted to float, int or boolean. If no cast is successful, the raw string
is returned.

Return type
float or int or bool or str

edisgo.tools.config.get_default_config_path()

Returns the basic edisgo config path. If it does not yet exist it creates it and copies all default config files into it.
Returns

Path to default edisgo config directory specified in config file ‘config_system.cfg’ in section
‘user_dirs’ by subsections ‘root_dir’ and ‘config_dir’.

Return type
str

edisgo.tools.config.make_directory(directory)
Makes directory if it does not exist.

Parameters
directory (str) – Directory path

132 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

edisgo.tools.geo module

edisgo.tools.geo.proj2equidistant(srid)
Transforms to equidistant projection (epsg:3035).

Parameters
srid (int) – Spatial reference identifier of geometry to transform.

Return type
functools.partial()

edisgo.tools.geo.proj2equidistant_reverse(srid)
Transforms back from equidistant projection to given projection.

Parameters
srid (int) – Spatial reference identifier of geometry to transform.

Return type
functools.partial()

edisgo.tools.geo.proj_by_srids(srid1, srid2)
Transforms from specified projection to other specified projection.

Parameters
• srid1 (int) – Spatial reference identifier of geometry to transform.

• srid2 (int) – Spatial reference identifier of destination CRS.
Return type

functools.partial()

Notes

Projections often used are conformal projection (epsg:4326), equidistant projection (epsg:3035) and spherical
mercator projection (epsg:3857).

edisgo.tools.geo.calc_geo_lines_in_buffer(grid_topology, bus, grid, buffer_radius=2000,
buffer_radius_inc=1000)

Determines lines that are at least partly within buffer around given bus.

If there are no lines, the buffer specified in buffer_radius is successively extended by buffer_radius_inc until
lines are found.

Parameters
• grid_topology (Topology) –

• bus (pandas.Series) – Data of origin bus the buffer is created around. Series has same
rows as columns of buses_df .

• grid (Grid) – Grid whose lines are searched.

• buffer_radius (float, optional) – Radius in m used to find connection targets.
Default: 2000.

• buffer_radius_inc (float, optional) – Radius in m which is incrementally
added to buffer_radius as long as no target is found. Default: 1000.

Returns
List of lines in buffer (meaning close to the bus) sorted by the lines’ representatives.

Return type
list(str)

1.8. API 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functools.html#functools.partial
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

edisgo.tools.geo.calc_geo_dist_vincenty(grid_topology, bus_source, bus_target,
branch_detour_factor=1.3)

Calculates the geodesic distance between two buses in km.

The detour factor in config_grid is incorporated in the geodesic distance.
Parameters

• grid_topology (Topology) –

• bus_source (str) – Name of source bus as in index of buses_df .

• bus_target (str) – Name of target bus as in index of buses_df .

• branch_detour_factor (float) – Detour factor to consider that two buses can usu-
ally not be connected directly. Default: 1.3.

Returns
Distance in km.

Return type
float

edisgo.tools.geo.find_nearest_bus(point, bus_target)
Finds the nearest bus in bus_target to a given point.

Parameters
• point (shapely.Point) – Point to find nearest bus for.

• bus_target (pandas.DataFrame) – Dataframe with candidate buses and their positions
given in ‘x’ and ‘y’ columns. The dataframe has the same format as buses_df .

Returns
Tuple that contains the name of the nearest bus and its distance.

Return type
tuple(str, float)

edisgo.tools.geo.find_nearest_conn_objects(grid_topology, bus, lines, conn_diff_tolerance=0.0001)
Searches all lines for the nearest possible connection object per line.

It picks out 1 object out of 3 possible objects: 2 line-adjacent buses and 1 potentially created branch tee on the
line (using perpendicular projection). The resulting stack (list) is sorted ascending by distance from bus.

Parameters
• grid_topology (Topology) –

• bus (pandas.Series) – Data of bus to connect. Series has same rows as columns of
buses_df .

• lines (list(str)) – List of line representatives from index of lines_df .

• conn_diff_tolerance (float, optional) – Threshold which is used to determine
if 2 objects are at the same position. Default: 0.0001.

Returns
List of connection objects. Each object is represented by dict with representative, shapely
object and distance to node.

Return type
list(dict)

134 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://shapely.readthedocs.io/en/latest/manual.html#Point
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.2.0

edisgo.tools.geopandas_helper module

class edisgo.tools.geopandas_helper.GeoPandasGridContainer(crs, grid_id, grid, buses_gdf,
generators_gdf, loads_gdf,
storage_units_gdf, transformers_gdf,
lines_gdf)

Bases: object

Grids geo data for all components with information about their geolocation.
Parameters

• crs (str) – Coordinate Reference System of the geometry objects.

• id (str or int) – Grid identifier

• grid (Grid) – Matching grid object

• buses_gdf (geopandas.GeoDataFrame) – GeoDataframe with all buses in the Grid.
See buses_df for more information.

• generators_gdf (geopandas.GeoDataFrame) – GeoDataframe with all generators in
the Grid. See generators_df for more information.

• loads_gdf (geopandas.GeoDataFrame) – GeoDataframe with all loads in the Grid.
See loads_df for more information.

• storage_units_gdf (geopandas.GeoDataFrame) – GeoDataframe with all storage
units in the Grid. See storage_units_df for more information.

• transformers_gdf (geopandas.GeoDataFrame) – GeoDataframe with all transform-
ers in the Grid. See transformers_df for more information.

• lines_gdf (geopandas.GeoDataFrame) – GeoDataframe with all lines in the Grid. See
loads_df for more information.

edisgo.tools.geopandas_helper.to_geopandas(grid_obj)
Translates all DataFrames with geolocations within a Grid class to GeoDataFrames.

Parameters
grid_obj (Grid) – Grid object to transform.

Returns
Data container with the grids geo data for all components with information about their geolo-
cation.

Return type
GeoPandasGridContainer

edisgo.tools.logger module

edisgo.tools.logger.setup_logger(file_name=None, log_dir=None, loggers=None,
stream_output=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='utf-8'>, debug_message=False, reset_loggers=False)

Setup different loggers with individual logging levels and where to write output.

The following table from python ‘Logging Howto’ shows you when which logging level is used.

1.8. API 135

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html
https://geopandas.org/en/stable/docs/reference/api/geopandas.GeoDataFrame.html

eDisGo Documentation, Release 0.2.0

Level When it’s used
DEBUG Detailed information, typically of interest only when diagnosing problems.
INFO Confirmation that things are working as expected.
WARNING An indication that something unexpected happened, or indicative of some problem in the near

future (e.g. ‘disk space low’). The software is still working as expected.
ERROR Due to a more serious problem, the software has not been able to perform some function.
CRITICAL A serious error, indicating that the program itself may be unable to continue running.

Parameters
• file_name (str or None) – Specifies file name of file logging information is written

to. Possible options are:

– None (default)
Saves log file with standard name %Y_%m_%d-%H:%M:%S_edisgo.log.

– str
Saves log file with the specified file name.

• log_dir (str or None) – Specifies directory log file is saved to. Possible options
are:

– None (default)
Saves log file in current working directory.

– ”default”
Saves log file into directory configured in the configs.

– str
Saves log file into the specified directory.

• loggers (None or list(dict)) –

– None
Configuration as shown in the example below is used. Configures root logger
with file and stream level warning and the edisgo logger with file and stream
level debug.

– list(dict)
List of dicts with the logger configuration. Each dictionary must contain the
following keys and corresponding values:

∗ ’name’
Specifies name of the logger as string, e.g. ‘root’ or ‘edisgo’.

∗ ’file_level’
Specifies file logging level. Possible options are:

· ”debug”
Logs logging messages with logging level logging.DEBUG and
above.

· ”info”
Logs logging messages with logging level logging.INFO and
above.

· ”warning”
Logs logging messages with logging level logging.WARNING
and above.

136 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.2.0

· ”error”
Logs logging messages with logging level logging.ERROR and
above.

· ”critical”
Logs logging messages with logging level logging.CRITICAL.

· None
No logging messages are logged.

∗ ’stream_level’
Specifies stream logging level. Possible options are the same as for
file_level.

• stream_output (stream) – Default sys.stdout is used. sys.stderr is also possible.

• debug_message (bool) – If True the handlers of every configured logger is printed.

• reset_loggers (bool) – If True the handlers of all loggers are cleared before config-
uring the loggers.

Examples

>>> setup_logger(
>>> loggers=[
>>> {"name": "root", "file_level": "warning", "stream_level": "warning"},
>>> {"name": "edisgo", "file_level": "info", "stream_level": "info"}
>>>]
>>>)

edisgo.tools.networkx_helper module

edisgo.tools.networkx_helper.translate_df_to_graph(buses_df, lines_df, transformers_df=None)
Translate DataFrames to networkx Graph Object.

Parameters
• buses_df (pandas.DataFrame) – Dataframe with all buses to use as Graph nodes. For

more information about the Dataframe see buses_df .
• lines_df (pandas.DataFrame) – Dataframe with all lines to use as Graph branches.

For more information about the Dataframe see lines_df
• transformers_df (pandas.DataFrame, optional) – Dataframe with all transformers

to use as additional Graph nodes. For more information about the Dataframe see
transformers_df

Returns
Graph representation of the grid as networkx Ordered Graph, where lines are represented by
edges in the graph, and buses and transformers are represented by nodes.

Return type
networkx.Graph

1.8. API 137

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://networkx.github.io/documentation/stable/reference/classes/graph.html#network.Graph

eDisGo Documentation, Release 0.2.0

edisgo.tools.plots module

edisgo.tools.plots.histogram(data, **kwargs)
Function to create histogram, e.g. for voltages or currents.

Parameters
• data (pandas.DataFrame) – Data to be plotted, e.g. voltage or current (v_res or

i_res from network.results.Results). Index of the dataframe must be a pan-
das.DatetimeIndex.

• timeindex (pandas.Timestamp or list(pandas.Timestamp) or None, optional) – Spec-
ifies time steps histogram is plotted for. If timeindex is None all time steps provided in
data are used. Default: None.

• directory (str or None, optional) – Path to directory the plot is saved to. Is created
if it does not exist. Default: None.

• filename (str or None, optional) – Filename the plot is saved as. File format is spec-
ified by ending. If filename is None, the plot is shown. Default: None.

• color (str or None, optional) – Color used in plot. If None it defaults to blue. Default:
None.

• alpha (float, optional) – Transparency of the plot. Must be a number between 0 and
1, where 0 is see through and 1 is opaque. Default: 1.

• title (str or None, optional) – Plot title. Default: None.
• x_label (str, optional) – Label for x-axis. Default: “”.
• y_label (str, optional) – Label for y-axis. Default: “”.
• normed (bool, optional) – Defines if histogram is normed. Default: False.
• x_limits (tuple or None, optional) – Tuple with x-axis limits. First entry is the

minimum and second entry the maximum value. Default: None.
• y_limits (tuple or None, optional) – Tuple with y-axis limits. First entry is the

minimum and second entry the maximum value. Default: None.
• fig_size (str or tuple, optional) –

Size of the figure in inches or a string with the following options:
– ’a4portrait’

– ’a4landscape’

– ’a5portrait’

– ’a5landscape’

Default: ‘a5landscape’.
• binwidth (float) – Width of bins. Default: None.

edisgo.tools.plots.add_basemap(ax, zoom=12)
Adds map to a plot.

edisgo.tools.plots.get_grid_district_polygon(config, subst_id=None, projection=4326)
Get MV network district polygon from oedb for plotting.

edisgo.tools.plots.mv_grid_topology(edisgo_obj, timestep=None, line_color=None, node_color=None,
line_load=None, grid_expansion_costs=None, filename=None,
arrows=False, grid_district_geom=True, background_map=True,
voltage=None, limits_cb_lines=None, limits_cb_nodes=None,
xlim=None, ylim=None, lines_cmap='inferno_r', title='',
scaling_factor_line_width=None, curtailment_df=None, **kwargs)

Plot line loading as color on lines.

Displays line loading relative to nominal capacity.
Parameters

138 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

• edisgo_obj (EDisGo) –
• timestep (pandas.Timestamp) – Time step to plot analysis results for. If timestep is

None maximum line load and if given, maximum voltage deviation, is used. In that
case arrows cannot be drawn. Default: None.

• line_color (str or None) – Defines whereby to choose line colors (and implicitly
size). Possible options are:

– ’loading’ Line color is set according to loading of the line. Loading of MV lines
must be provided by parameter line_load.

– ’expansion_costs’ Line color is set according to investment costs of the line.
This option also effects node colors and sizes by plotting investment in stations
and setting node_color to ‘storage_integration’ in order to plot storage size of
integrated storage units. Grid expansion costs must be provided by parameter
grid_expansion_costs.

– None (default) Lines are plotted in black. Is also the fallback option in case of
wrong input.

• node_color (str or None) – Defines whereby to choose node colors (and implicitly
size). Possible options are:

– ’technology’ Node color as well as size is set according to type of node (generator,
MV station, etc.).

– ’voltage’ Node color is set according to maximum voltage at each node. Voltages
of nodes in MV network must be provided by parameter voltage.

– ’voltage_deviation’ Node color is set according to voltage deviation from 1 p.u..
Voltages of nodes in MV network must be provided by parameter voltage.

– ’storage_integration’ Only storage units are plotted. Size of node corresponds to
size of storage.

– None (default) Nodes are not plotted. Is also the fallback option in case of wrong
input.

– ’curtailment’ Plots curtailment per node. Size of node corresponds to share of
curtailed power for the given time span. When this option is chosen a dataframe
with curtailed power per time step and node needs to be provided in parameter
curtailment_df.

– ’charging_park’ Plots nodes with charging stations in red.
• line_load (pandas.DataFrame or None) – Dataframe with current results from power

flow analysis in A. Index of the dataframe is a pandas.DatetimeIndex, columns are the
line representatives. Only needs to be provided when parameter line_color is set to
‘loading’. Default: None.

• grid_expansion_costs (pandas.DataFrame or None) – Dataframe with network ex-
pansion costs in kEUR. See grid_expansion_costs in Results for more information.
Only needs to be provided when parameter line_color is set to ‘expansion_costs’. De-
fault: None.

• filename (str) – Filename to save plot under. If not provided, figure is shown directly.
Default: None.

• arrows (Boolean) – If True draws arrows on lines in the direction of the power flow.
Does only work when line_color option ‘loading’ is used and a time step is given.
Default: False.

• grid_district_geom (Boolean) – If True network district polygon is plotted in the
background. This also requires the geopandas package to be installed. Default: True.

• background_map (Boolean) – If True map is drawn in the background. This also
requires the contextily package to be installed. Default: True.

1.8. API 139

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

• voltage (pandas.DataFrame) – Dataframe with voltage results from power flow anal-
ysis in p.u.. Index of the dataframe is a pandas.DatetimeIndex, columns are the bus
representatives. Only needs to be provided when parameter node_color is set to ‘volt-
age’. Default: None.

• limits_cb_lines (tuple) – Tuple with limits for colorbar of line color. First entry is
the minimum and second entry the maximum value. Only needs to be provided when
parameter line_color is not None. Default: None.

• limits_cb_nodes (tuple) – Tuple with limits for colorbar of nodes. First entry is
the minimum and second entry the maximum value. Only needs to be provided when
parameter node_color is not None. Default: None.

• xlim (tuple) – Limits of x-axis. Default: None.
• ylim (tuple) – Limits of y-axis. Default: None.
• lines_cmap (str) – Colormap to use for lines in case line_color is ‘loading’ or ‘ex-

pansion_costs’. Default: ‘inferno_r’.
• title (str) – Title of the plot. Default: ‘’.
• scaling_factor_line_width (float or None) – If provided line width is set ac-

cording to the nominal apparent power of the lines. If line width is None a default line
width of 2 is used for each line. Default: None.

• curtailment_df (pandas.DataFrame) – Dataframe with curtailed power per time step
and node. Columns of the dataframe correspond to buses and index to the time step.
Only needs to be provided if node_color is set to ‘curtailment’.

• legend_loc (str) – Location of legend. See matplotlib legend location options for
more information. Default: ‘upper left’.

edisgo.tools.plots.color_map_color(value, vmin, vmax, cmap_name='coolwarm')
Get matching color for a value on a matplotlib color map.

Parameters
• value (float or int) – Value to get color for
• vmin (float or int) – Minimum value on color map
• vmax (float or int) – Maximum value on color map
• cmap_name (str or list) – Name of color map to use, or the colormap

Returns
Color name in hex format

Return type
str

edisgo.tools.plots.plot_plotly(edisgo_obj, grid=None, line_color='relative_loading',
node_color='voltage_deviation', line_result_selection='max',
node_result_selection='max', selected_timesteps=None,
center_coordinates=False, pseudo_coordinates=False,
node_selection=False)

Draws a plotly html figure.
Parameters

• edisgo_obj (EDisGo) – Selected edisgo_obj to get plotting information from.
• grid (Grid) – Grid to plot. If None, the MVGrid of the edisgo_obj is plotted. Default:

None.
• line_color (str or None) – Defines whereby to choose line colors. Possible op-

tions are:

– ’loading’
Line color is set according to loading of the line.

– ’relative_loading’ (default)
Line color is set according to relative loading of the line.

– ’reinforce’

140 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.dataframe.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Line color is set according to investment costs of the line.

– None
Line color is black. This is also the fallback, in case other options fail.

• node_color (str or None) – Defines whereby to choose node colors. Possible op-
tions are:

– ’adjacencies’
Node color as well as size is set according to the number of direct neighbors.

– ’voltage_deviation’ (default)
Node color is set according to voltage deviation from 1 p.u..

– None
Line color is black. This is also the fallback, in case other options fail.

• line_result_selection (str) – Defines which values are shown for the load of the
lines:

– ’min’
Minimal line load of all time steps.

– ’max’ (default)
Maximal line load of all time steps.

• node_result_selection (str) – Defines which values are shown for the voltage of
the nodes:

– ’min’
Minimal node voltage of all time steps.

– ’max’ (default)
Maximal node voltage of all time steps.

• selected_timesteps (pandas.Timestamp or list(pandas.Timestamp) or None) – Se-
lected time steps to show results for.

– None (default)
All time steps are used.

– list(pandas.Timestamp) or pandas.Timestamp Selected time steps are used.
• center_coordinates (bool) – Enables the centering of the coordinates. If True the

transformer node is set to the coordinates x=0 and y=0. Else, the coordinates from the
HV/MV-station of the MV grid are used. Default: False.

• pseudo_coordinates (bool) – Enable pseudo coordinates for the plotted grid. De-
fault: False.

• node_selection (bool or list(str)) – Only plot selected nodes. Default: False.
Returns

Plotly figure with branches and nodes.
Return type

plotlyplotly.graph_objects.Figure

edisgo.tools.plots.chosen_graph(edisgo_obj, selected_grid)
Get the matching networkx graph from a chosen grid.

Parameters
• edisgo_obj (EDisGo) –
• selected_grid (str) – Grid name. Can be either ‘Grid’ to select the MV grid with

all LV grids or the name of the MV grid to select only the MV grid or the name of one
of the LV grids of the eDisGo object to select a specific LV grid.

Returns
Tuple with the first entry being the networkx graph of the selected grid and the second entry
the grid to use as root node. See draw_plotly() for more information.

1.8. API 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Return type
(networkx.Graph, Grid or bool)

edisgo.tools.plots.plot_dash_app(edisgo_objects, debug=False)
Generates a jupyter dash app from given eDisGo object(s).

Parameters
• edisgo_objects (EDisGo or dict[str, EDisGo]) – eDisGo objects to show in plotly

dash app. In the case of multiple edisgo objects pass a dictionary with the eDisGo
objects as values and the respective eDisGo object names as keys.

• debug (bool) – Debugging for the dash app:

– False (default)
Disable debugging for the dash app.

– True
Enable debugging for the dash app.

Returns
Jupyter dash app.

Return type
JupyterDash

edisgo.tools.plots.plot_dash(edisgo_objects, mode='inline', debug=False, port=8050)
Shows the generated jupyter dash app from given eDisGo object(s).

Parameters
• edisgo_objects (EDisGo or dict[str, EDisGo]) – eDisGo objects to show in plotly

dash app. In the case of multiple edisgo objects pass a dictionary with the eDisGo
objects as values and the respective eDisGo object names as keys.

• mode (str) – Display mode

– ”inline” (default)
Jupyter lab inline plotting.

– ”jupyterlab”
Plotting in own Jupyter lab tab.

– ”external”
Plotting in own browser tab.

• debug (bool) – If True, enables debugging of the jupyter dash app.
• port (int) – Port which the app uses. Default: 8050.

edisgo.tools.powermodels_io module

edisgo.tools.powermodels_io.to_powermodels(pypsa_net)
Convert pypsa network to network dictionary format, using the pypower structure as an intermediate steps

powermodels network dictionary: https://lanl-ansi.github.io/PowerModels.jl/stable/network-data/

pypower caseformat: https://github.com/rwl/PYPOWER/blob/master/pypower/caseformat.py
Parameters

pypsa_net –
Returns

edisgo.tools.powermodels_io.convert_storage_series(timeseries)

edisgo.tools.powermodels_io.add_storage_from_edisgo(edisgo_obj, psa_net, pm_dict)
Read static storage data (position and capacity) from eDisGo and export to Powermodels dict

142 Chapter 1. Contents

https://networkx.github.io/documentation/stable/reference/classes/graph.html#network.Graph
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://lanl-ansi.github.io/PowerModels.jl/stable/network-data/
https://github.com/rwl/PYPOWER/blob/master/pypower/caseformat.py

eDisGo Documentation, Release 0.2.0

edisgo.tools.powermodels_io.pypsa2ppc(psa_net)
Converter from pypsa data structure to pypower data structure

adapted from pandapower’s pd2ppc converter

https://github.com/e2nIEE/pandapower/blob/911f300a96ee0ac062d82f7684083168ff052586/pandapower/
pd2ppc.py

edisgo.tools.powermodels_io.ppc2pm(ppc, psa_net)
converter from pypower datastructure to powermodels dictionary,

adapted from pandapower to powermodels converter: https://github.com/e2nIEE/pandapower/blob/develop/
pandapower/converter/powermodels/to_pm.py

Parameters
ppc –

Returns

edisgo.tools.preprocess_pypsa_opf_structure module

edisgo.tools.preprocess_pypsa_opf_structure.preprocess_pypsa_opf_structure(edisgo_grid,
psa_network,
hvmv_trafo=False)

Prepares pypsa network for OPF problem.
• adds line costs
• adds HV side of HV/MV transformer to network
• moves slack to HV side of HV/MV transformer

Parameters
• edisgo_grid (EDisGo) –
• psa_network (pypsa.Network) –
• hvmv_trafo (Boolean) – If True, HV side of HV/MV transformer is added to buses

and Slack generator is moved to HV side.

edisgo.tools.preprocess_pypsa_opf_structure.aggregate_fluct_generators(psa_network)
Aggregates fluctuating generators of same type at the same node.

Iterates over all generator buses. If multiple fluctuating generators are attached, they are aggregated by type.
Parameters

psa_network (pypsa.Network) –

edisgo.tools.tools module

edisgo.tools.tools.select_worstcase_snapshots(edisgo_obj)
Select two worst-case snapshots from time series

Two time steps in a time series represent worst-case snapshots. These are
1. Maximum Residual Load: refers to the point in the time series where the

(load - generation) achieves its maximum.
2. Minimum Residual Load: refers to the point in the time series where the

(load - generation) achieves its minimum.
These two points are identified based on the generation and load time series. In case load or feed-in case don’t
exist None is returned.

Parameters
edisgo_obj (EDisGo) –

1.8. API 143

https://github.com/e2nIEE/pandapower/blob/911f300a96ee0ac062d82f7684083168ff052586/pandapower/pd2ppc.py
https://github.com/e2nIEE/pandapower/blob/911f300a96ee0ac062d82f7684083168ff052586/pandapower/pd2ppc.py
https://github.com/e2nIEE/pandapower/blob/develop/pandapower/converter/powermodels/to_pm.py
https://github.com/e2nIEE/pandapower/blob/develop/pandapower/converter/powermodels/to_pm.py
https://pypsa.readthedocs.io/en/latest/components.html#network
https://pypsa.readthedocs.io/en/latest/components.html#network

eDisGo Documentation, Release 0.2.0

Returns
Dictionary with keys ‘min_residual_load’ and ‘max_residual_load’. Values are corresponding
worst-case snapshots of type pandas.Timestamp.

Return type
dict

edisgo.tools.tools.calculate_relative_line_load(edisgo_obj, lines=None, timesteps=None)
Calculates relative line loading for specified lines and time steps.

Line loading is calculated by dividing the current at the given time step by the allowed current.
Parameters

• edisgo_obj (EDisGo) –
• lines (list(str) or None, optional) – Line names/representatives of lines to

calculate line loading for. If None, line loading is calculated for all lines in the network.
Default: None.

• timesteps (pandas.Timestamp or list(pandas.Timestamp) or None, optional) – Spec-
ifies time steps to calculate line loading for. If timesteps is None, all time steps power
flow analysis was conducted for are used. Default: None.

Returns
Dataframe with relative line loading (unitless). Index of the dataframe is a pan-
das.DatetimeIndex, columns are the line representatives.

Return type
pandas.DataFrame

edisgo.tools.tools.calculate_line_reactance(line_inductance_per_km, line_length, num_parallel)
Calculates line reactance in Ohm.

Parameters
• line_inductance_per_km (float or array-like) – Line inductance in mH/km.
• line_length (float) – Length of line in km.
• num_parallel (int) – Number of parallel lines.

Returns
Reactance in Ohm

Return type
float

edisgo.tools.tools.calculate_line_resistance(line_resistance_per_km, line_length, num_parallel)
Calculates line resistance in Ohm.

Parameters
• line_resistance_per_km (float or array-like) – Line resistance in Ohm/km.
• line_length (float) – Length of line in km.
• num_parallel (int) – Number of parallel lines.

Returns
Resistance in Ohm

Return type
float

edisgo.tools.tools.calculate_line_susceptance(line_capacitance_per_km, line_length, num_parallel)
Calculates line shunt susceptance in Siemens.

Parameters
• line_capacitance_per_km (float) – Line capacitance in uF/km.
• line_length (float) – Length of line in km.
• num_parallel (int) – Number of parallel lines.

Returns
Shunt susceptance in Siemens.

Return type
float

144 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DatetimeIndex.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.2.0

edisgo.tools.tools.calculate_apparent_power(nominal_voltage, current, num_parallel)
Calculates apparent power in MVA from given voltage and current.

Parameters
• nominal_voltage (float or array-like) – Nominal voltage in kV.
• current (float or array-like) – Current in kA.
• num_parallel (int or array-like) – Number of parallel lines.

Returns
Apparent power in MVA.

Return type
float

edisgo.tools.tools.drop_duplicated_indices(dataframe, keep='first')
Drop rows of duplicate indices in dataframe.

Parameters
• dataframe (pandas.DataFrame) – handled dataframe
• keep (str) – indicator of row to be kept, ‘first’, ‘last’ or False, see pan-

das.DataFrame.drop_duplicates() method

edisgo.tools.tools.drop_duplicated_columns(df, keep='first')
Drop columns of dataframe that appear more than once.

Parameters
• df (pandas.DataFrame) – Dataframe of which columns are dropped.
• keep (str) – Indicator of whether to keep first (‘first’), last (‘last’) or none (False) of

the duplicated columns. See drop_duplicates() method of pandas.DataFrame.

edisgo.tools.tools.select_cable(edisgo_obj, level, apparent_power)
Selects suitable cable type and quantity using given apparent power.

Cable is selected to be able to carry the given apparent_power, no load factor is considered. Overhead lines are
not considered in choosing a suitable cable.

Parameters
• edisgo_obj (EDisGo) –
• level (str) – Grid level to get suitable cable for. Possible options are ‘mv’ or ‘lv’.
• apparent_power (float) – Apparent power the cable must carry in MVA.

Returns
• pandas.Series – Series with attributes of selected cable as in equipment data and cable

type as series name.
• int – Number of necessary parallel cables.

edisgo.tools.tools.assign_feeder(edisgo_obj, mode='mv_feeder')
Assigns MV or LV feeder to each bus and line, depending on the mode.

The feeder name is written to a new column mv_feeder or lv_feeder in Topology’s buses_df and lines_df .
The MV respectively LV feeder name corresponds to the name of the first bus in the respective feeder.

Parameters
• edisgo_obj (EDisGo) –
• mode (str) – Specifies whether to assign MV or LV feeder. Valid options are

‘mv_feeder’ or ‘lv_feeder’. Default: ‘mv_feeder’.

edisgo.tools.tools.get_path_length_to_station(edisgo_obj)
Determines path length from each bus to HV-MV station.

The path length is written to a new column path_length_to_station in buses_df dataframe of Topology class.
Parameters

edisgo_obj (EDisGo) –
Returns

Series with bus name in index and path length to station as value.

1.8. API 145

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

Return type
pandas.Series

edisgo.tools.tools.assign_voltage_level_to_component(df, buses_df)
Adds column with specification of voltage level component is in.

The voltage level (‘mv’ or ‘lv’) is determined based on the nominal voltage of the bus the component is connected
to. If the nominal voltage is smaller than 1 kV, voltage level ‘lv’ is assigned, otherwise ‘mv’ is assigned.

Parameters
• df (pandas.DataFrame) – Dataframe with component names in the index. Only required

column is column ‘bus’, giving the name of the bus the component is connected to.
• buses_df (pandas.DataFrame) – Dataframe with bus information. Bus names are in

the index. Only required column is column ‘v_nom’, giving the nominal voltage of the
voltage level the bus is in.

Returns
Same dataframe as given in parameter df with new column ‘voltage_level’ specifying the
voltage level the component is in (either ‘mv’ or ‘lv’).

Return type
pandas.DataFrame

edisgo.tools.tools.get_weather_cells_intersecting_with_grid_district(edisgo_obj)
Get all weather cells that intersect with the grid district.

Parameters
edisgo_obj (EDisGo) –

Returns
Set with weather cell IDs

Return type
set

edisgo.tools.tools.get_directory_size(start_dir)
Calculates the size of all files within the start path.

Walks through all files and sub-directories within a given directory and calculate the sum of size of all files in
the directory. See: https://stackoverflow.com/a/1392549/13491957

Parameters
start_dir (str) – Start path.

Returns
Size of the directory.

Return type
int

edisgo.tools.tools.get_files_recursive(path, files=None)
Recursive function to get all files in a given path and its sub directories.

Parameters
• path (str) – Directory to start from.
• files (list, optional) – List of files to start with. Default: None.

edisgo.tools.tools.add_line_susceptance(edisgo_obj, mode='mv_b')
Adds line susceptance information in Siemens to lines in existing grids.

Parameters
• edisgo_obj (EDisGo) – EDisGo object to which line susceptance information is

added.
• mode (str) – Defines how the susceptance is added:

– ’no_b’
Susceptance is set to 0 for all lines.

146 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#set
https://stackoverflow.com/a/1392549/13491957
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.2.0

– ’mv_b’ (Default)
Susceptance is for the MV lines set according to the equipment parameters
and for the LV lines it is set to zero.

– ’all_b’
Susceptance is for the MV lines set according to the equipment parameters
and for the LV lines 0.25 uF/km is chosen.

Return type
EDisGo

Module contents

edisgo.tools.session_scope()

Function to ensure that sessions are closed properly.

1.9 What’s New

Changelog for each release.

• Release v0.2.0

• Release v0.1.1

• Release v0.1.0

• Release v0.0.10

• Release v0.0.9

• Release v0.0.8

• Release v0.0.7

• Release v0.0.6

• Release v0.0.5

• Release v0.0.3

• Release v0.0.2

1.9.1 Release v0.2.0

Release date: November 10, 2022

1.9. What’s New 147

eDisGo Documentation, Release 0.2.0

Changes

• added pre-commit hooks (flake8, black, isort, pyupgrade) #229

• added issue and pull request templates #220

• added Windows installation yml and documentation

• added automatic testing for Windows #317

• dropped support for python 3.7

• added functionality to set up different loggers with individual logging levels and where to write output #295

• added integrity checks of eDisGo object #231

• added functionality to save to and load from zip archive #216

• added option to not raise error in case power flow did not converge #207

• added pyplot #214

• added functionality to create geopandas dataframes #224

• added functionality to resample time series #269

• added tests

• major refactoring of loads and time series

– restructured time series module to allow more options on how to set component time series #236

– added charging points to Topology.loads_df to make eDisGo more flexible when further new load types
are added

– peak_load in Topology.loads_df is renamed to p_nom #242

– renamed all occurences of feedin in config files to feed-in

– added simultaneity factors for heat pumps and electric vehicles

– grid reinforcement now considers separate simultaneity factors for dimensioning of LV and MV #252

• added interface to electromobility data from tools SimBEV and TracBEV (SimBEV provides data on standing
times, charging demand, etc. per vehicle, whereas TracBEV provides potential charging point locations) #174
and #191

1.9.2 Release v0.1.1

Release date: July 22, 2022

This release comes with some minor additions and bug fixes.

148 Chapter 1. Contents

https://github.com/openego/eDisGo/pull/229
https://github.com/openego/eDisGo/issues/220
https://github.com/openego/eDisGo/pull/317
https://github.com/openego/eDisGo/issues/295
https://github.com/openego/eDisGo/issues/231
https://github.com/openego/eDisGo/pull/216
https://github.com/openego/eDisGo/issues/207
https://github.com/openego/eDisGo/pull/214
https://github.com/openego/eDisGo/issues/224
https://github.com/openego/eDisGo/pull/269
https://github.com/openego/eDisGo/pull/236
https://github.com/openego/eDisGo/issues/242
https://github.com/openego/eDisGo/pull/252
https://github.com/openego/eDisGo/issues/174
https://github.com/openego/eDisGo/pull/191

eDisGo Documentation, Release 0.2.0

Changes

• Added a pull request and issue template

• Fix readthecods API doc

• Consider parallel lines in calculation of x, r and s_nom

• Bug fix calculation of x and r of new lines

• Bug fix of getting a list of all weather cells within grid district

1.9.3 Release v0.1.0

Release date: July 26, 2021

This release comes with some major refactoring. The internal data structure of the network topologies was changed
from a networkx graph structure to a pandas dataframe structure based on the PyPSA data structure. This comes along
with major API changes. Not all functionality of the previous eDisGo release 0.0.10 is yet refactored (e.g. the heuristics
for grid supportive storage integration and generator curtailment), but we are working on it and the upcoming releases
will have the full functionality again.

Besides the refactoring we added extensive tests along with automatic testing with GitHub Actions and coveralls tool
to track test coverage.

Further, from now on python 3.6 is not supported anymore. Supported python versions are 3.7, 3.8 and 3.9.

Changes

• Major refactoring #159

• Added support for Python 3.7, 3.8 and 3.9 #181

• Added GitHub Actions for testing and coverage #180

• Adapted to new ding0 release #184 - loads and generators in the same building are now connected to the same bus
instead of separate buses and loads and generators in aggregated load areas are connected via a MV/LV station
instead of directly to the HV/MV station)

• Added charging points as new components along with a methodology to integrate them into the grid

• Added multiperiod optimal power flow based on julia package PowerModels.jl optimizing storage positioning
and/or operation as well as generator dispatch with regard to minimizing grid expansion costs

1.9.4 Release v0.0.10

Release date: October 18, 2019

1.9. What’s New 149

https://pypsa.readthedocs.io/en/latest/
https://github.com/openego/eDisGo/pull/159
https://github.com/openego/eDisGo/pull/181
https://github.com/openego/eDisGo/pull/180
https://github.com/openego/eDisGo/pull/184

eDisGo Documentation, Release 0.2.0

Changes

• Updated to networkx 2.0

• Changed data of transformers #240

• Proper session handling and readonly usage (PR #160)

Bug fixes

• Corrected calculation of current from pypsa power flow results (PR #153).

1.9.5 Release v0.0.9

Release date: December 3, 2018

Changes

• bug fix in determining voltage deviation in LV stations and LV grid

1.9.6 Release v0.0.8

Release date: October 29, 2018

Changes

• added tolerance for curtailment targets slightly higher than generator availability to allow small rounding errors

1.9.7 Release v0.0.7

Release date: October 23, 2018

This release mainly focuses on new plotting functionalities and making reimporting saved results to further analyze
and visualize them more comfortable.

Changes

• new plotting methods in the EDisGo API class (plottings of the MV grid topology showing line loadings, grid
expansion costs, voltages and/or integrated storages and histograms for voltages and relative line loadings)

• new classes EDisGoReimport, NetworkReimport and ResultsReimport to reimport saved results and enable all
analysis and plotting functionalities offered by the original classes

• bug fixes

150 Chapter 1. Contents

https://github.com/openego/ding0/issues/240
https://github.com/openego/eDisGo/pull/160
https://github.com/openego/eDisGo/pull/153

eDisGo Documentation, Release 0.2.0

1.9.8 Release v0.0.6

Release date: September 6, 2018

This release comes with a bunch of new features such as results output and visualization, speed-up options, a new
storage integration methodology and an option to provide separate allowed voltage deviations for calculation of grid
expansion needs. See list of changes below for more details.

Changes

• A methodolgy to integrate storages in the MV grid to reduce grid expansion costs was added that takes a given
storage capacity and operation and allocates it to multiple smaller storages. This methodology is mainly to be
used together with the eTraGo tool where an optimization of the HV and EHV levels is conducted to calculate
optiomal storage size and operation at each HV/MV substation.

• The voltage-based curtailment methodolgy was adapted to take into account allowed voltage deviations and
curtail generators with voltages that exceed the allowed voltage deviation more than generators with voltages that
do not exceed the allowed voltage deviation.

• When conducting grid reinforcement it is now possible to apply separate allowed voltage deviations for different
voltage levels (#108). Furthermore, an additional check was added at the end of the grid expansion methodology
if the 10%-criterion was observed.

• To speed up calculations functions to update the pypsa representation of the edisgo graph after generator import,
storage integration and time series update, e.g. after curtailment, were added.

• Also as a means to speed up calculations an option to calculate grid expansion costs for the two worst time steps,
characterized by highest and lowest residual load at the HV/MV substation, was added.

• For the newly added storage integration methodology it was necessary to calculate grid expansion costs without
changing the topology of the graph in order to identify feeders with high grid expansion needs. Therefore, the
option to conduct grid reinforcement on a copy of the graph was added to the grid expansion function.

• So far loads and generators always provided or consumed inductive reactive power with the specified power
factor. It is now possible to specify whether loads and generators should behave as inductors or capacitors and
to provide a concrete reactive power time series(#131).

• The Results class was extended by outputs for storages, grid losses and active and reactive power at the HV/MV
substation (#138) as well as by a function to save all results to csv files.

• A plotting function to plot line loading in the MV grid was added.

• Update ding0 version to v0.1.8 and include data processing v0.4.5 data

• Bug fix

1.9.9 Release v0.0.5

Release date: July 19, 2018

Most important changes in this release are some major bug fixes, a differentiation of line load factors and allowed
voltage deviations for load and feed-in case in the grid reinforcement and a possibility to update time series in the
pypsa representation.

1.9. What’s New 151

https://github.com/openego/eTraGo
https://github.com/openego/eDisGo/issues/108
https://github.com/openego/eDisGo/issues/131
https://github.com/openego/eDisGo/issues/138
https://github.com/openego/ding0/releases/tag/v0.1.8
https://github.com/openego/data_processing/releases/tag/v0.4.5
https://github.com/openego/eDisGo/issues/135

eDisGo Documentation, Release 0.2.0

Changes

• Switch disconnecters in MV rings will now be installed, even if no LV station exists in the ring #136

• Update to new version of ding0 v0.1.7

• Consider feed-in and load case in grid expansion methodology

• Enable grid expansion on snapshots

• Bug fixes

1.9.10 Release v0.0.3

Release date: July 6 2018

New features have been included in this release. Major changes being the use of the weather_cell_id and the inclusion
of new methods for distributing the curtailment to be more suitable to network operations.

Changes

• As part of the solution to github issues #86, #98, Weather cell information was of importance due to the changes
in the source of data. The table ego_renewable_feedin_v031 is now used to provide this feedin time series indexed
using the weather cell id’s. Changes were made to ego.io and ding0 to correspondingly allow the use of this table
by eDisGo.

• A new curtailment method have been included based on the voltages at the nodes with GeneratorFluctuating ob-
jects. The method is called curtail_voltage and its objective is to increase curtailment at locations where voltages
are very high, thereby alleviating over-voltage issues and also reducing the need for network reinforcement.

• Add parallelization for custon functions #130

• Update ding0 version to v0.1.6 and include data processing v.4.2 data

• Bug Fixes

1.9.11 Release v0.0.2

Release date: March 15 2018

The code was heavily revised. Now, eDisGo provides the top-level API class EDisGo for user interaction. See below
for details and other small changes.

Changes

• Switch disconnector/ disconnecting points are now relocated by eDisGo #99. Before, locations determined by
Ding0 were used. Relocation is conducted according to minimal load differences in both parts of the ring.

• Switch disconnectors are always located in LV stations #23

• Made all round speed improvements as mentioned in the issues #43

• The structure of eDisGo and its input data has been extensively revised in order to make it more consistent and
easier to use. We introduced a top-level API class called EDisGo through which all user input and measures are
now handled. The EDisGo class thereby replaces the former Scenario class and parts of the Network class. See
A minimum working example for a quick overview of how to use the EDisGo class or Usage details for a more
comprehensive introduction to the edisgo structure and usage.

152 Chapter 1. Contents

https://github.com/openego/eDisGo/issues/136
https://github.com/openego/ding0/releases/tag/v0.1.7
https://github.com/openego/eDisGo/issues/86
https://github.com/openego/eDisGo/issues/98
https://github.com/openego/eDisGo/issues/130
https://github.com/openego/ding0/releases/tag/v0.1.6
https://github.com/openego/data_processing/releases/tag/v0.4.2
https://github.com/openego/eDisGo/issues/99
https://github.com/openego/eDisGo/issues/23
https://github.com/openego/eDisGo/issues/43

eDisGo Documentation, Release 0.2.0

• We introduce a CLI script to use basic functionality of eDisGo including parallelization. CLI uses higher level
functions to run eDisGo. Consult edisgo_run for further details. #93.

1.10 Index

Index

1.10. Index 153

https://github.com/openego/eDisGo/issues/93
https://docs.python.org/3/genindex.html

eDisGo Documentation, Release 0.2.0

154 Chapter 1. Contents

BIBLIOGRAPHY

[DENA] A.C. Agricola et al.: dena-Verteilnetzstudie: Ausbau- und Innovationsbedarf der Stromverteilnetze in
Deutschland bis 2030. 2012.

155

eDisGo Documentation, Release 0.2.0

156 Bibliography

PYTHON MODULE INDEX

e
edisgo.flex_opt.charging_strategies, 107
edisgo.flex_opt.check_tech_constraints, 108
edisgo.flex_opt.costs, 112
edisgo.flex_opt.exceptions, 113
edisgo.flex_opt.heat_pump_operation, 113
edisgo.flex_opt.q_control, 114
edisgo.flex_opt.reinforce_grid, 114
edisgo.flex_opt.reinforce_measures, 116
edisgo.io.ding0_import, 118
edisgo.io.electromobility_import, 119
edisgo.io.generators_import, 123
edisgo.io.pypsa_io, 123
edisgo.io.timeseries_import, 124
edisgo.network.components, 56
edisgo.network.electromobility, 63
edisgo.network.grids, 67
edisgo.network.heat, 72
edisgo.network.results, 75
edisgo.network.timeseries, 82
edisgo.network.topology, 94
edisgo.opf.results.opf_expand_network, 127
edisgo.opf.results.opf_result_class, 129
edisgo.opf.run_mp_opf, 126
edisgo.opf.timeseries_reduction, 126
edisgo.opf.util.plot_solutions, 130
edisgo.opf.util.scenario_settings, 130
edisgo.tools, 147
edisgo.tools.config, 130
edisgo.tools.geo, 133
edisgo.tools.geopandas_helper, 135
edisgo.tools.logger, 135
edisgo.tools.networkx_helper, 137
edisgo.tools.plots, 138
edisgo.tools.powermodels_io, 142
edisgo.tools.preprocess_pypsa_opf_structure,

143
edisgo.tools.tools, 143

157

eDisGo Documentation, Release 0.2.0

158 Python Module Index

INDEX

A
active_power_timeseries

(edisgo.network.components.Generator prop-
erty), 59

active_power_timeseries
(edisgo.network.components.Load property),
58

active_power_timeseries
(edisgo.network.components.Storage prop-
erty), 59

add_basemap() (in module edisgo.tools.plots), 138
add_bus() (edisgo.network.topology.Topology method),

102
add_component() (edisgo.EDisGo method), 47
add_component_time_series()

(edisgo.network.timeseries.TimeSeries
method), 92

add_generator() (edisgo.network.topology.Topology
method), 101

add_line() (edisgo.network.topology.Topology
method), 102

add_line_susceptance() (in module
edisgo.tools.tools), 146

add_load() (edisgo.network.topology.Topology
method), 101

add_storage_from_edisgo() (in module
edisgo.tools.powermodels_io), 142

add_storage_unit() (edisgo.network.topology.Topology
method), 102

aggregate_components() (edisgo.EDisGo method),
49

aggregate_fluct_generators() (in module
edisgo.tools.preprocess_pypsa_opf_structure),
143

ags (edisgo.network.components.PotentialChargingParks
property), 61

analyze() (edisgo.EDisGo method), 45
annual_consumption (edisgo.network.components.Load

property), 57
apply_charging_strategy() (edisgo.EDisGo

method), 51
apply_heat_pump_operating_strategy()

(edisgo.EDisGo method), 52
assign_feeder() (in module edisgo.tools.tools), 145
assign_voltage_level_to_component() (in module

edisgo.tools.tools), 146

B
BasicComponent (class in edisgo.network.components),

56
branch (edisgo.network.components.Switch property), 61
building_ids_df (edisgo.network.heat.HeatPump

property), 73
bus (edisgo.network.components.Component property),

57
bus_closed (edisgo.network.components.Switch prop-

erty), 60
bus_names_to_ints() (in module

edisgo.opf.run_mp_opf), 126
bus_open (edisgo.network.components.Switch property),

60
buses_df (edisgo.network.grids.Grid property), 69
buses_df (edisgo.network.grids.LVGrid property), 71
buses_df (edisgo.network.grids.MVGrid property), 70
buses_df (edisgo.network.topology.Topology property),

98
BusVariables (class in

edisgo.opf.results.opf_result_class), 129

C
calc_geo_dist_vincenty() (in module

edisgo.tools.geo), 133
calc_geo_lines_in_buffer() (in module

edisgo.tools.geo), 133
calculate_apparent_power() (in module

edisgo.tools.tools), 144
calculate_line_reactance() (in module

edisgo.tools.tools), 144
calculate_line_resistance() (in module

edisgo.tools.tools), 144
calculate_line_susceptance() (in module

edisgo.tools.tools), 144
calculate_relative_line_load() (in module

edisgo.tools.tools), 144

159

eDisGo Documentation, Release 0.2.0

change_line_type() (edisgo.network.topology.Topology
method), 104

charging_points_active_power()
(edisgo.network.timeseries.TimeSeries
method), 84

charging_points_active_power_by_use_case
(edisgo.network.timeseries.TimeSeriesRaw
attribute), 93

charging_points_df (edisgo.network.grids.Grid prop-
erty), 69

charging_points_df (edisgo.network.topology.Topology
property), 99

charging_points_reactive_power()
(edisgo.network.timeseries.TimeSeries
method), 84

charging_processes_df
(edisgo.network.components.PotentialChargingParks
property), 62

charging_processes_df
(edisgo.network.electromobility.Electromobility
property), 63

charging_strategy() (in module
edisgo.flex_opt.charging_strategies), 107

check_integrity() (edisgo.EDisGo method), 55
check_integrity() (edisgo.network.timeseries.TimeSeries

method), 92
check_integrity() (edisgo.network.topology.Topology

method), 106
check_ten_percent_voltage_deviation() (in mod-

ule edisgo.flex_opt.check_tech_constraints),
111

chosen_graph() (in module edisgo.tools.plots), 141
close() (edisgo.network.components.Switch method),

61
color_map_color() (in module edisgo.tools.plots), 140
combine_weights() (in module

edisgo.io.electromobility_import), 121
Component (class in edisgo.network.components), 57
Config (class in edisgo.tools.config), 130
config (edisgo.EDisGo property), 39
connect_to_lv() (edisgo.network.topology.Topology

method), 104
connect_to_mv() (edisgo.network.topology.Topology

method), 104
conventional_loads_active_power_by_sector

(edisgo.network.timeseries.TimeSeriesRaw
attribute), 93

convert() (in module edisgo.opf.run_mp_opf), 126
convert_storage_series() (in module

edisgo.tools.powermodels_io), 142
cop_df (edisgo.network.heat.HeatPump property), 72
cop_oedb() (in module edisgo.io.timeseries_import),

125

D
designated_charging_point_capacity

(edisgo.network.components.PotentialChargingParks
property), 62

determine_grid_connection_capacity() (in mod-
ule edisgo.io.electromobility_import), 122

dispatchable_generators_active_power_by_technology
(edisgo.network.timeseries.TimeSeriesRaw at-
tribute), 93

distribute_charging_demand() (in module
edisgo.io.electromobility_import), 120

distribute_private_charging_demand() (in mod-
ule edisgo.io.electromobility_import), 122

distribute_public_charging_demand() (in module
edisgo.io.electromobility_import), 122

draw() (edisgo.network.grids.LVGrid method), 71
draw() (edisgo.network.grids.MVGrid method), 71
drop_component_time_series()

(edisgo.network.timeseries.TimeSeries
method), 92

drop_duplicated_columns() (in module
edisgo.tools.tools), 145

drop_duplicated_indices() (in module
edisgo.tools.tools), 145

dump_solution_file()
(edisgo.opf.results.opf_result_class.OPFResults
method), 129

E
EDisGo (class in edisgo), 38
edisgo.flex_opt.charging_strategies

module, 107
edisgo.flex_opt.check_tech_constraints

module, 108
edisgo.flex_opt.costs

module, 112
edisgo.flex_opt.exceptions

module, 113
edisgo.flex_opt.heat_pump_operation

module, 113
edisgo.flex_opt.q_control

module, 114
edisgo.flex_opt.reinforce_grid

module, 114
edisgo.flex_opt.reinforce_measures

module, 116
edisgo.io.ding0_import

module, 118
edisgo.io.electromobility_import

module, 119
edisgo.io.generators_import

module, 123
edisgo.io.pypsa_io

module, 123

160 Index

eDisGo Documentation, Release 0.2.0

edisgo.io.timeseries_import
module, 124

edisgo.network.components
module, 56

edisgo.network.electromobility
module, 63

edisgo.network.grids
module, 67

edisgo.network.heat
module, 72

edisgo.network.results
module, 75

edisgo.network.timeseries
module, 82

edisgo.network.topology
module, 94

edisgo.opf.results.opf_expand_network
module, 127

edisgo.opf.results.opf_result_class
module, 129

edisgo.opf.run_mp_opf
module, 126

edisgo.opf.timeseries_reduction
module, 126

edisgo.opf.util.plot_solutions
module, 130

edisgo.opf.util.scenario_settings
module, 130

edisgo.tools
module, 147

edisgo.tools.config
module, 130

edisgo.tools.geo
module, 133

edisgo.tools.geopandas_helper
module, 135

edisgo.tools.logger
module, 135

edisgo.tools.networkx_helper
module, 137

edisgo.tools.plots
module, 138

edisgo.tools.powermodels_io
module, 142

edisgo.tools.preprocess_pypsa_opf_structure
module, 143

edisgo.tools.tools
module, 143

edisgo_id (edisgo.network.components.PotentialChargingParks
property), 62

edisgo_obj (edisgo.network.components.BasicComponent
property), 56

edisgo_obj (edisgo.network.grids.Grid property), 67
edisgo_obj (in module edisgo.flex_opt.costs), 112

edisgo_object (edisgo.network.results.Results at-
tribute), 75

Electromobility (class in
edisgo.network.electromobility), 63

electromobility (edisgo.EDisGo attribute), 39
equality_check() (edisgo.network.results.Results

method), 81
equipment_changes (edisgo.network.results.Results

property), 77
equipment_data (edisgo.network.topology.Topology

property), 100
Error, 113
eta_charging_points

(edisgo.network.electromobility.Electromobility
property), 65

expand_network() (in module
edisgo.opf.results.opf_expand_network),
127

F
feedin_oedb() (in module

edisgo.io.timeseries_import), 124
find_nearest_bus() (in module edisgo.tools.geo), 134
find_nearest_conn_objects() (in module

edisgo.tools.geo), 134
fixed_cosphi() (edisgo.network.timeseries.TimeSeries

method), 89
fixed_cosphi() (in module edisgo.flex_opt.q_control),

114
flexibility_bands (edisgo.network.electromobility.Electromobility

property), 66
fluctuating_generators_active_power_by_technology

(edisgo.network.timeseries.TimeSeriesRaw at-
tribute), 93

from_cfg() (edisgo.tools.config.Config method), 131
from_csv() (edisgo.network.electromobility.Electromobility

method), 67
from_csv() (edisgo.network.heat.HeatPump method),

75
from_csv() (edisgo.network.results.Results method), 82
from_csv() (edisgo.network.timeseries.TimeSeries

method), 92
from_csv() (edisgo.network.timeseries.TimeSeriesRaw

method), 94
from_csv() (edisgo.network.topology.Topology

method), 106
from_json() (edisgo.tools.config.Config method), 131

G
Generator (class in edisgo.network.components), 58
generators (edisgo.network.grids.Grid property), 68
generators_active_power

(edisgo.network.timeseries.TimeSeries prop-
erty), 83

Index 161

eDisGo Documentation, Release 0.2.0

generators_df (edisgo.network.grids.Grid property),
68

generators_df (edisgo.network.topology.Topology
property), 95

generators_reactive_power
(edisgo.network.timeseries.TimeSeries prop-
erty), 83

GeneratorVariables (class in
edisgo.opf.results.opf_result_class), 129

geom (edisgo.network.components.Component property),
57

geometry (edisgo.network.components.PotentialChargingParks
property), 62

geopandas (edisgo.network.grids.Grid property), 67
geopandas (edisgo.network.grids.LVGrid property), 72
GeoPandasGridContainer (class in

edisgo.tools.geopandas_helper), 135
get() (in module edisgo.tools.config), 132
get_connected_components_from_bus()

(edisgo.network.topology.Topology method),
101

get_connected_lines_from_bus()
(edisgo.network.topology.Topology method),
100

get_curtailment_per_node() (in module
edisgo.opf.results.opf_expand_network),
128

get_default_config_path() (in module
edisgo.tools.config), 132

get_directory_size() (in module edisgo.tools.tools),
146

get_files_recursive() (in module
edisgo.tools.tools), 146

get_flexibility_bands()
(edisgo.network.electromobility.Electromobility
method), 66

get_grid_district_polygon() (in module
edisgo.tools.plots), 138

get_line_connecting_buses()
(edisgo.network.topology.Topology method),
100

get_linked_steps() (in module
edisgo.opf.timeseries_reduction), 127

get_load_curtailment_per_node() (in module
edisgo.opf.results.opf_expand_network), 128

get_lv_grid() (edisgo.network.topology.Topology
method), 99

get_neighbours() (edisgo.network.topology.Topology
method), 101

get_path_length_to_station() (in module
edisgo.tools.tools), 145

get_q_sign_generator() (in module
edisgo.flex_opt.q_control), 114

get_q_sign_load() (in module

edisgo.flex_opt.q_control), 114
get_steps_curtailment() (in module

edisgo.opf.timeseries_reduction), 126
get_steps_storage() (in module

edisgo.opf.timeseries_reduction), 127
get_weather_cells_intersecting_with_grid_district()

(in module edisgo.tools.tools), 146
get_weights_df() (in module

edisgo.io.electromobility_import), 121
graph (edisgo.network.grids.Grid property), 67
Grid (class in edisgo.network.grids), 67
grid (edisgo.network.components.BasicComponent

property), 56
grid (edisgo.network.components.Component property),

57
grid (edisgo.network.components.PotentialChargingParks

property), 61
grid (edisgo.network.components.Switch property), 61
grid_connection_capacity

(edisgo.network.components.PotentialChargingParks
property), 63

grid_district (edisgo.network.topology.Topology
property), 100

grid_expansion_costs
(edisgo.network.results.Results property),
78

grid_expansion_costs() (in module
edisgo.flex_opt.costs), 112

grid_expansion_costs() (in module
edisgo.opf.results.opf_expand_network),
127

grid_losses (edisgo.network.results.Results property),
78

H
harmonize_charging_processes_df() (in module

edisgo.flex_opt.charging_strategies), 107
heat_demand_df (edisgo.network.heat.HeatPump prop-

erty), 72
heat_demand_oedb() (in module

edisgo.io.timeseries_import), 125
heat_pump (edisgo.EDisGo attribute), 39
HeatPump (class in edisgo.network.heat), 72
histogram() (in module edisgo.tools.plots), 138
histogram_relative_line_load() (edisgo.EDisGo

method), 53
histogram_voltage() (edisgo.EDisGo method), 53
hv_mv_station_load() (in module

edisgo.flex_opt.check_tech_constraints),
109

I
i_res (edisgo.network.results.Results property), 76

162 Index

eDisGo Documentation, Release 0.2.0

id (edisgo.network.components.BasicComponent prop-
erty), 56

id (edisgo.network.grids.Grid property), 67
id (edisgo.network.topology.Topology property), 99
import_ding0_grid() (edisgo.EDisGo method), 40
import_ding0_grid() (in module

edisgo.io.ding0_import), 118
import_electromobility() (edisgo.EDisGo method),

49
import_electromobility() (in module

edisgo.io.electromobility_import), 119
import_generators() (edisgo.EDisGo method), 45
import_heat_pumps() (edisgo.EDisGo method), 51
ImpossibleVoltageReduction, 113
integrate_charging_parks() (in module

edisgo.io.electromobility_import), 122
integrate_component_based_on_geolocation()

(edisgo.EDisGo method), 48
integrate_curtailment_as_load() (in module

edisgo.opf.results.opf_expand_network), 129
integrate_storage_units() (in module

edisgo.opf.results.opf_expand_network),
127

integrated_charging_parks_df
(edisgo.network.electromobility.Electromobility
property), 65

is_worst_case (edisgo.network.timeseries.TimeSeries
property), 83

L
line_expansion_costs() (in module

edisgo.flex_opt.costs), 112
lines_allowed_load() (in module

edisgo.flex_opt.check_tech_constraints),
108

lines_df (edisgo.network.grids.Grid property), 69
lines_df (edisgo.network.topology.Topology property),

97
lines_relative_load() (in module

edisgo.flex_opt.check_tech_constraints),
108

LineVariables (class in
edisgo.opf.results.opf_result_class), 129

Load (class in edisgo.network.components), 57
load_config() (in module edisgo.tools.config), 132
load_time_series_demandlib() (in module

edisgo.io.timeseries_import), 125
loads (edisgo.network.grids.Grid property), 68
loads_active_power (edisgo.network.timeseries.TimeSeries

property), 84
loads_df (edisgo.network.grids.Grid property), 68
loads_df (edisgo.network.topology.Topology property),

94

loads_reactive_power
(edisgo.network.timeseries.TimeSeries prop-
erty), 84

LoadVariables (class in
edisgo.opf.results.opf_result_class), 129

lv_grids (edisgo.network.grids.MVGrid property), 70
lv_grids (edisgo.network.topology.Topology property),

99
lv_line_load() (in module

edisgo.flex_opt.check_tech_constraints),
108

lv_voltage_deviation() (in module
edisgo.flex_opt.check_tech_constraints),
110

LVGrid (class in edisgo.network.grids), 71

M
make_directory() (in module edisgo.tools.config), 132
MaximumIterationError, 113
measures (edisgo.network.results.Results property), 75
message (edisgo.flex_opt.exceptions.ImpossibleVoltageReduction

attribute), 113
message (edisgo.flex_opt.exceptions.MaximumIterationError

attribute), 113
module

edisgo.flex_opt.charging_strategies, 107
edisgo.flex_opt.check_tech_constraints,

108
edisgo.flex_opt.costs, 112
edisgo.flex_opt.exceptions, 113
edisgo.flex_opt.heat_pump_operation, 113
edisgo.flex_opt.q_control, 114
edisgo.flex_opt.reinforce_grid, 114
edisgo.flex_opt.reinforce_measures, 116
edisgo.io.ding0_import, 118
edisgo.io.electromobility_import, 119
edisgo.io.generators_import, 123
edisgo.io.pypsa_io, 123
edisgo.io.timeseries_import, 124
edisgo.network.components, 56
edisgo.network.electromobility, 63
edisgo.network.grids, 67
edisgo.network.heat, 72
edisgo.network.results, 75
edisgo.network.timeseries, 82
edisgo.network.topology, 94
edisgo.opf.results.opf_expand_network,

127
edisgo.opf.results.opf_result_class, 129
edisgo.opf.run_mp_opf, 126
edisgo.opf.timeseries_reduction, 126
edisgo.opf.util.plot_solutions, 130
edisgo.opf.util.scenario_settings, 130
edisgo.tools, 147

Index 163

eDisGo Documentation, Release 0.2.0

edisgo.tools.config, 130
edisgo.tools.geo, 133
edisgo.tools.geopandas_helper, 135
edisgo.tools.logger, 135
edisgo.tools.networkx_helper, 137
edisgo.tools.plots, 138
edisgo.tools.powermodels_io, 142
edisgo.tools.preprocess_pypsa_opf_structure,

143
edisgo.tools.tools, 143

mv_grid (edisgo.network.topology.Topology property),
99

mv_grid_topology() (in module edisgo.tools.plots),
138

mv_line_load() (in module
edisgo.flex_opt.check_tech_constraints),
108

mv_lv_station_load() (in module
edisgo.flex_opt.check_tech_constraints),
109

mv_voltage_deviation() (in module
edisgo.flex_opt.check_tech_constraints),
110

MVGrid (class in edisgo.network.grids), 70

N
nearest_substation (edisgo.network.components.PotentialChargingParks

property), 62
nominal_power (edisgo.network.components.Generator

property), 58
nominal_power (edisgo.network.components.Storage

property), 59
nominal_voltage (edisgo.network.grids.Grid prop-

erty), 67
normalize() (in module

edisgo.io.electromobility_import), 121

O
oedb() (in module edisgo.io.generators_import), 123
open() (edisgo.network.components.Switch method), 61
operating_strategy() (in module

edisgo.flex_opt.heat_pump_operation), 113
opf_settings() (in module

edisgo.opf.util.scenario_settings), 130
OPFResults (class in edisgo.opf.results.opf_result_class),

129

P
p_set (edisgo.network.components.Load property), 57
p_set (edisgo.network.grids.Grid property), 70
p_set_per_sector (edisgo.network.grids.Grid prop-

erty), 70
peak_generation_capacity

(edisgo.network.grids.Grid property), 69

peak_generation_capacity_per_technology
(edisgo.network.grids.Grid property), 70

perform_mp_opf() (edisgo.EDisGo method), 47
pfa_p (edisgo.network.results.Results property), 75
pfa_q (edisgo.network.results.Results property), 76
pfa_slack (edisgo.network.results.Results property), 79
pfa_v_ang_seed (edisgo.network.results.Results prop-

erty), 79
pfa_v_mag_pu_seed (edisgo.network.results.Results

property), 79
plot_dash() (in module edisgo.tools.plots), 142
plot_dash_app() (in module edisgo.tools.plots), 142
plot_line_expansion() (in module

edisgo.opf.util.plot_solutions), 130
plot_mv_grid() (edisgo.EDisGo method), 53
plot_mv_grid_expansion_costs() (edisgo.EDisGo

method), 53
plot_mv_grid_topology() (edisgo.EDisGo method),

53
plot_mv_line_loading() (edisgo.EDisGo method),

53
plot_mv_storage_integration() (edisgo.EDisGo

method), 53
plot_mv_voltages() (edisgo.EDisGo method), 53
plot_plotly() (in module edisgo.tools.plots), 140
potential_charging_parks

(edisgo.network.electromobility.Electromobility
property), 64

potential_charging_parks_gdf
(edisgo.network.electromobility.Electromobility
property), 64

PotentialChargingParks (class in
edisgo.network.components), 61

ppc2pm() (in module edisgo.tools.powermodels_io), 143
predefined_charging_points_by_use_case()

(edisgo.network.timeseries.TimeSeries
method), 89

predefined_conventional_loads_by_sector()
(edisgo.network.timeseries.TimeSeries
method), 89

predefined_dispatchable_generators_by_technology()
(edisgo.network.timeseries.TimeSeries
method), 88

predefined_fluctuating_generators_by_technology()
(edisgo.network.timeseries.TimeSeries
method), 88

preprocess_pypsa_opf_structure() (in module
edisgo.tools.preprocess_pypsa_opf_structure),
143

process_pfa_results() (in module
edisgo.io.pypsa_io), 124

proj2equidistant() (in module edisgo.tools.geo), 133
proj2equidistant_reverse() (in module

edisgo.tools.geo), 133

164 Index

eDisGo Documentation, Release 0.2.0

proj_by_srids() (in module edisgo.tools.geo), 133
pypsa2ppc() (in module edisgo.tools.powermodels_io),

142

Q
q_control (edisgo.network.timeseries.TimeSeriesRaw

attribute), 93

R
reactive_power_timeseries

(edisgo.network.components.Generator prop-
erty), 59

reactive_power_timeseries
(edisgo.network.components.Load property),
58

reactive_power_timeseries
(edisgo.network.components.Storage prop-
erty), 60

read_csvs_charging_processes() (in module
edisgo.io.electromobility_import), 119

read_from_json() (in module
edisgo.opf.results.opf_result_class), 129

read_gpkg_potential_charging_parks() (in mod-
ule edisgo.io.electromobility_import), 120

read_simbev_config_df() (in module
edisgo.io.electromobility_import), 120

read_solution_file()
(edisgo.opf.results.opf_result_class.OPFResults
method), 129

reduce_memory() (edisgo.EDisGo method), 55
reduce_memory() (edisgo.network.heat.HeatPump

method), 74
reduce_memory() (edisgo.network.results.Results

method), 80
reduce_memory() (edisgo.network.timeseries.TimeSeries

method), 91
reduce_memory() (edisgo.network.timeseries.TimeSeriesRaw

method), 94
reinforce() (edisgo.EDisGo method), 47
reinforce_grid() (in module

edisgo.flex_opt.reinforce_grid), 114
reinforce_hv_mv_station_overloading() (in mod-

ule edisgo.flex_opt.reinforce_measures), 116
reinforce_lines_overloading() (in module

edisgo.flex_opt.reinforce_measures), 118
reinforce_lines_voltage_issues() (in module

edisgo.flex_opt.reinforce_measures), 117
reinforce_mv_lv_station_overloading() (in mod-

ule edisgo.flex_opt.reinforce_measures), 116
reinforce_mv_lv_station_voltage_issues() (in

module edisgo.flex_opt.reinforce_measures),
117

remove_1m_end_lines() (in module
edisgo.io.ding0_import), 118

remove_bus() (edisgo.network.topology.Topology
method), 103

remove_component() (edisgo.EDisGo method), 49
remove_generator() (edisgo.network.topology.Topology

method), 103
remove_line() (edisgo.network.topology.Topology

method), 103
remove_load() (edisgo.network.topology.Topology

method), 103
remove_storage_unit()

(edisgo.network.topology.Topology method),
103

resample_timeseries() (edisgo.EDisGo method), 55
resample_timeseries()

(edisgo.network.timeseries.TimeSeries
method), 93

reset() (edisgo.network.timeseries.TimeSeries method),
85

residual_load (edisgo.network.timeseries.TimeSeries
property), 91

Results (class in edisgo.network.results), 75
results (edisgo.EDisGo attribute), 39
rings (edisgo.network.topology.Topology property), 100
run_mp_opf() (in module edisgo.opf.run_mp_opf), 126

S
s_res (edisgo.network.results.Results property), 77
save() (edisgo.EDisGo method), 54
save_edisgo_to_pickle() (edisgo.EDisGo method),

55
sector (edisgo.network.components.Load property), 58
select_cable() (in module edisgo.tools.tools), 145
select_worstcase_snapshots() (in module

edisgo.tools.tools), 143
session_scope() (in module edisgo.tools), 147
set_active_power_manual()

(edisgo.network.timeseries.TimeSeries
method), 85

set_bus_variables()
(edisgo.opf.results.opf_result_class.OPFResults
method), 129

set_cop() (edisgo.network.heat.HeatPump method), 73
set_gen_variables()

(edisgo.opf.results.opf_result_class.OPFResults
method), 129

set_heat_demand() (edisgo.network.heat.HeatPump
method), 73

set_line_variables()
(edisgo.opf.results.opf_result_class.OPFResults
method), 129

set_load_variables()
(edisgo.opf.results.opf_result_class.OPFResults
method), 129

Index 165

eDisGo Documentation, Release 0.2.0

set_reactive_power_manual()
(edisgo.network.timeseries.TimeSeries
method), 85

set_seed() (in module edisgo.io.pypsa_io), 124
set_solution() (edisgo.opf.results.opf_result_class.OPFResults

method), 129
set_solution_to_results()

(edisgo.opf.results.opf_result_class.OPFResults
method), 129

set_strg_variables()
(edisgo.opf.results.opf_result_class.OPFResults
method), 130

set_time_series_active_power_predefined()
(edisgo.EDisGo method), 41

set_time_series_manual() (edisgo.EDisGo method),
40

set_time_series_reactive_power_control()
(edisgo.EDisGo method), 42

set_time_series_worst_case_analysis()
(edisgo.EDisGo method), 41

set_timeindex() (edisgo.EDisGo method), 40
set_worst_case() (edisgo.network.timeseries.TimeSeries

method), 86
setup_logger() (in module edisgo.tools.logger), 135
simbev_config_df (edisgo.network.electromobility.Electromobility

property), 64
simulated_days (edisgo.network.electromobility.Electromobility

property), 65
state (edisgo.network.components.Switch property), 61
station (edisgo.network.grids.Grid property), 68
stepsize (edisgo.network.electromobility.Electromobility

property), 65
Storage (class in edisgo.network.components), 59
storage_units_active_power

(edisgo.network.timeseries.TimeSeries prop-
erty), 84

storage_units_df (edisgo.network.grids.Grid prop-
erty), 68

storage_units_df (edisgo.network.topology.Topology
property), 96

storage_units_reactive_power
(edisgo.network.timeseries.TimeSeries prop-
erty), 85

StorageVariables (class in
edisgo.opf.results.opf_result_class), 129

subtype (edisgo.network.components.Generator prop-
erty), 59

Switch (class in edisgo.network.components), 60
switch_disconnectors (edisgo.network.grids.Grid

property), 69
switch_disconnectors_df

(edisgo.network.grids.Grid property), 69
switches_df (edisgo.network.topology.Topology prop-

erty), 98

T
thermal_storage_units_df

(edisgo.network.heat.HeatPump property),
72

time_series_raw (edisgo.network.timeseries.TimeSeries
attribute), 83

timeindex (edisgo.network.timeseries.TimeSeries prop-
erty), 83

TimeSeries (class in edisgo.network.timeseries), 82
timeseries (edisgo.EDisGo attribute), 39
TimeSeriesRaw (class in edisgo.network.timeseries), 93
timesteps_load_feedin_case

(edisgo.network.timeseries.TimeSeries prop-
erty), 91

to_csv() (edisgo.network.electromobility.Electromobility
method), 66

to_csv() (edisgo.network.heat.HeatPump method), 74
to_csv() (edisgo.network.results.Results method), 81
to_csv() (edisgo.network.timeseries.TimeSeries

method), 91
to_csv() (edisgo.network.timeseries.TimeSeriesRaw

method), 94
to_csv() (edisgo.network.topology.Topology method),

106
to_geopandas() (edisgo.network.topology.Topology

method), 106
to_geopandas() (in module

edisgo.tools.geopandas_helper), 135
to_graph() (edisgo.EDisGo method), 45
to_graph() (edisgo.network.topology.Topology

method), 106
to_json() (edisgo.tools.config.Config method), 131
to_powermodels() (in module

edisgo.tools.powermodels_io), 142
to_pypsa() (edisgo.EDisGo method), 43
to_pypsa() (in module edisgo.io.pypsa_io), 123
Topology (class in edisgo.network.topology), 94
topology (edisgo.EDisGo attribute), 39
topology (edisgo.network.components.BasicComponent

property), 56
transformers_df (edisgo.network.grids.LVGrid prop-

erty), 71
transformers_df (edisgo.network.grids.MVGrid prop-

erty), 70
transformers_df (edisgo.network.topology.Topology

property), 96
transformers_hvmv_df

(edisgo.network.topology.Topology property),
97

translate_df_to_graph() (in module
edisgo.tools.networkx_helper), 137

type (edisgo.network.components.Generator property),
58

type (edisgo.network.components.Switch property), 60

166 Index

eDisGo Documentation, Release 0.2.0

U
unresolved_issues (edisgo.network.results.Results

property), 80
update_number_of_parallel_lines()

(edisgo.network.topology.Topology method),
103

use_case (edisgo.network.components.PotentialChargingParks
property), 62

user_centric_weight
(edisgo.network.components.PotentialChargingParks
property), 62

V
v_res (edisgo.network.results.Results property), 76
voltage_diff() (in module

edisgo.flex_opt.check_tech_constraints),
111

voltage_level (edisgo.network.components.BasicComponent
property), 56

voltage_level (edisgo.network.components.PotentialChargingParks
property), 61

W
weather_cell_id (edisgo.network.components.Generator

property), 59
weather_cells (edisgo.network.grids.Grid property),

69
weighted_random_choice() (in module

edisgo.io.electromobility_import), 122
within_grid (edisgo.network.components.PotentialChargingParks

property), 63
without_generator_import (in module

edisgo.flex_opt.costs), 112

Index 167

	Contents
	Getting started
	Installation using Linux
	Installation using Windows
	Installation using MacOS
	Requirements for edisgoOPF package
	Additional linear solver

	Prerequisites
	A minimum working example
	LICENSE

	Usage details
	The fundamental data structure
	Component time series
	Active power time series
	Manual
	Worst-case
	Predefined
	Optimised
	Heuristic

	Reactive power time series
	Manual
	Fixed cos

	Identifying grid issues
	Grid expansion
	Electromobility
	Heat pumps
	Battery storage systems
	Curtailment
	Plots
	Results

	Features in detail
	Power flow analysis
	Multi period optimal power flow
	Grid expansion
	General methodology
	Identification of overloading and voltage issues
	Check line load
	Check station load
	Check line and station voltage deviation

	Grid expansion measures
	Reinforce lines due to overloading issues
	Reinforce stations due to overloading issues
	Reinforce MV/LV stations due to voltage issues
	Reinforce lines due to voltage

	Grid expansion costs

	Curtailment
	‘feedin-proportional’
	‘voltage-based’

	Electromobility integration
	Allocation of charging demand
	Charging strategies
	‘dumb’
	‘reduced’
	‘residual’

	Storage integration
	References

	Notes to developers
	Installation
	Installation using Linux
	Installation using Windows
	Installation using MacOS

	Code standards
	Documentation

	Definition and units
	Sign Convention
	Generator Sign Convention
	Load Sign Convention

	Reactive Power Sign Convention
	Units

	Default configuration data
	config_db_tables
	config_grid_expansion
	config_timeseries
	config_grid

	Equipment data
	API
	EDisGo class
	edisgo.network package
	edisgo.network.components module
	edisgo.network.electromobility module
	edisgo.network.grids module
	edisgo.network.heat module
	edisgo.network.results module
	edisgo.network.timeseries module
	edisgo.network.topology module

	edisgo.flex_opt package
	edisgo.flex_opt.charging_strategies module
	edisgo.flex_opt.check_tech_constraints module
	edisgo.flex_opt.costs module
	edisgo.flex_opt.exceptions module
	edisgo.flex_opt.heat_pump_operation module
	edisgo.flex_opt.q_control module
	edisgo.flex_opt.reinforce_grid module
	edisgo.flex_opt.reinforce_measures module

	edisgo.io package
	edisgo.io.ding0_import module
	edisgo.io.electromobility_import module
	edisgo.io.generators_import module
	edisgo.io.pypsa_io module
	edisgo.io.timeseries_import module

	edisgo.opf package
	edisgo.opf.run_mp_opf module
	edisgo.opf.timeseries_reduction module
	edisgo.opf.results package
	edisgo.opf.util package

	edisgo.tools package
	edisgo.tools.config module
	edisgo.tools.geo module
	edisgo.tools.geopandas_helper module
	edisgo.tools.logger module
	edisgo.tools.networkx_helper module
	edisgo.tools.plots module
	edisgo.tools.powermodels_io module
	edisgo.tools.preprocess_pypsa_opf_structure module
	edisgo.tools.tools module
	Module contents

	What’s New
	Release v0.2.0
	Changes

	Release v0.1.1
	Changes

	Release v0.1.0
	Changes

	Release v0.0.10
	Changes
	Bug fixes

	Release v0.0.9
	Changes

	Release v0.0.8
	Changes

	Release v0.0.7
	Changes

	Release v0.0.6
	Changes

	Release v0.0.5
	Changes

	Release v0.0.3
	Changes

	Release v0.0.2
	Changes

	Index

	Bibliography
	Python Module Index
	Index

