
eDisGo Documentation
Release 0.0.10

open𝑒𝐺𝑜− 𝑇𝑒𝑎𝑚

Aug 11, 2020

Contents

1 eDisGo 3
1.1 LICENSE . 3

2 Quickstart 5
2.1 Installation . 5
2.2 Prerequisites . 5
2.3 A minimum working example . 5
2.4 Parallelization . 7

3 Usage details 9
3.1 The fundamental data structure . 9
3.2 Identify grid issues . 10
3.3 Grid extension . 11
3.4 Battery storages . 11
3.5 Curtailment . 11
3.6 Plots . 12
3.7 Results . 12

4 Features in detail 15
4.1 Power flow analysis . 15
4.2 Grid expansion . 15
4.3 Curtailment . 18
4.4 Storage integration . 19
4.5 References . 20

5 Notes to developers 21
5.1 Installation . 21
5.2 Code style . 21
5.3 Documentation . 21

6 Definition and units 23
6.1 Sign Convention . 23
6.2 Reactive Power Sign Convention . 23
6.3 Units . 25

7 Default configuration data 27
7.1 config_db_tables . 27

i

7.2 config_grid_expansion . 28
7.3 config_timeseries . 30
7.4 config_grid . 32

8 Equipment data 35

9 API 37
9.1 edisgo package . 37
9.2 edisgo . 99

10 What’s New 101
10.1 Release v0.0.10 . 101
10.2 Release v0.0.9 . 102
10.3 Release v0.0.8 . 102
10.4 Release v0.0.7 . 102
10.5 Release v0.0.6 . 102
10.6 Release v0.0.5 . 103
10.7 Release v0.0.3 . 104
10.8 Release v0.0.2 . 104

11 Indices and tables 105

Bibliography 107

Python Module Index 109

Index 111

ii

eDisGo Documentation, Release 0.0.10

eDisGo – Optimization of flexibility options and grid expansion for distribution grids based on PyPSA

Contents 1

eDisGo Documentation, Release 0.0.10

2 Contents

CHAPTER 1

eDisGo

The python package eDisGo provides a toolbox to analyze distribution grids for grid issues and to evaluate measures
responding these. This software lives in the context of the research project open_eGo. It is closely related to the
python project Ding0 as this project is currently the single data source for eDisGo providing synthetic grid data for
whole Germany.

The toolbox currently includes

• Data import from data sources of the open_eGo project

• Power flow analysis for grid issue identification (enabled by PyPSA)

• Grid reinforcement solving overloading and voltage issues

• Curtailment methodologies

• Battery storage integration

See Quickstart for the first steps. A deeper guide is provided in Usage details. Methodologies are explained in detail
in Features in detail. For those of you who want to contribute see Notes to developers and the API reference.

1.1 LICENSE

Copyright (C) 2018 Reiner Lemoine Institut gGmbH

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https:
//www.gnu.org/licenses/.

3

https://openegoproject.wordpress.com
https://github.com/openego/ding0
https://pypsa.org
https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

eDisGo Documentation, Release 0.0.10

4 Chapter 1. eDisGo

CHAPTER 2

Quickstart

2.1 Installation

Install latest eDisGo version through pip. Therefore, we highly recommend using a virtual environment and use its
pip.

pip3 install edisgo

In order to create plots with background maps you additionally need to install the python package contextily.

Consider to install a developer version as detailed in Notes to developers.

2.2 Prerequisites

Beyond a running and up-to-date installation of eDisGo you need grid topology data. Currently synthetic grid data
generated with the python project Ding0 is the only supported data source. You can retrieve data from Zenodo (make
sure you choose latest data) or check out the ding0 documentation on how to generate grids yourself.

2.3 A minimum working example

Following you find short examples on how to use eDisGo. Further examples and details are provided in Usage details.

All following examples assume you have a ding0 grid topology file named “ding0_grids__42.pkl” in current working
directory.

Aside from grid topology data you may eventually need a dataset on future installation of power plants. You may
therefore use the scenarios developed in the open_eGo project that are available in the OpenEnergy DataBase (oedb)
hosted on the OpenEnergy Platform (OEP). eDisGo provides an interface to the oedb using the package ego.io. ego.io
gives you a python SQL-Alchemy representations of the oedb and access to it by using the oedialect, an SQL-Alchemy
dialect used by the OEP.

5

https://github.com/darribas/contextily
https://github.com/openego/ding0
https://zenodo.org/record/890479
https://openegoproject.wordpress.com
https://openenergy-platform.org/dataedit/
https://oep.iks.cs.ovgu.de/
https://github.com/openego/ego.io
https://github.com/openego/oedialect

eDisGo Documentation, Release 0.0.10

You can run a worst-case scenario as follows:

Using package included command-line script

edisgo_run -f ding0_grids__42.pkl -wc

Or coding the script yourself with finer control of details

from edisgo import EDisGo

Set up the EDisGo object that will import the grid topology, set up
feed-in and load time series (here for a worst case analysis)
and other relevant data
edisgo = EDisGo(ding0_grid="ding0_grids__42.pkl",

worst_case_analysis='worst-case')

Import scenario for future generators from the oedb
edisgo.import_generators(generator_scenario='nep2035')

Conduct grid analysis (non-linear power flow)
edisgo.analyze()

Do grid reinforcement
edisgo.reinforce()

Determine costs for each line/transformer that was reinforced
costs = edisgo.network.results.grid_expansion_costs

Instead of conducting a worst-case analysis you can also provide specific time series:

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object with your own time series
(these are dummy time series!)
timeindex specifies which time steps to consider in power flow
timeindex = pd.date_range('1/1/2011', periods=4, freq='H')
load time series (scaled by annual demand)
timeseries_load = pd.DataFrame({'residential': [0.0001] * len(timeindex),

'commercial': [0.0002] * len(timeindex),
'industrial': [0.0015] * len(timeindex),
'agricultural': [0.00005] * len(timeindex)},

index=timeindex)
feed-in time series of fluctuating generators (scaled by nominal power)
timeseries_generation_fluctuating = \

pd.DataFrame({'solar': [0.2] * len(timeindex),
'wind': [0.3] * len(timeindex)},

index=timeindex)
feed-in time series of dispatchable generators (scaled by nominal power)
timeseries_generation_dispatchable = \

pd.DataFrame({'biomass': [1] * len(timeindex),
'coal': [1] * len(timeindex),
'other': [1] * len(timeindex)},

index=timeindex)

Set up the EDisGo object with your own time series and generator scenario
NEP2035
edisgo = EDisGo(

(continues on next page)

6 Chapter 2. Quickstart

eDisGo Documentation, Release 0.0.10

(continued from previous page)

ding0_grid="ding0_grids__42.pkl",
generator_scenario='nep2035',
timeseries_load=timeseries_load,
timeseries_generation_fluctuating=timeseries_generation_fluctuating,
timeseries_generation_dispatchable=timeseries_generation_dispatchable,
timeindex=timeindex)

Do grid reinforcement
edisgo.reinforce()

Determine cost for each line/transformer that was reinforced
costs = edisgo.network.results.grid_expansion_costs

Time series for load and fluctuating generators can also be automatically generated using the provided API for the
oemof demandlib and the OpenEnergy DataBase:

import pandas as pd
from edisgo import EDisGo

Set up the EDisGo object using the OpenEnergy DataBase and the oemof
demandlib to set up time series for loads and fluctuating generators
(time series for dispatchable generators need to be provided)
timeindex = pd.date_range('1/1/2011', periods=4, freq='H')
timeseries_generation_dispatchable = \

pd.DataFrame({'other': [1] * len(timeindex)},
index=timeindex)

edisgo = EDisGo(
ding0_grid="ding0_grids__42.pkl",
generator_scenario='ego100',
timeseries_load='demandlib',
timeseries_generation_fluctuating='oedb',
timeseries_generation_dispatchable=timeseries_generation_dispatchable,
timeindex=timeindex)

Do grid reinforcement
edisgo.reinforce()

Determine cost for each line/transformer that was reinforced
costs = edisgo.network.results.grid_expansion_costs

2.4 Parallelization

Try run_edisgo_pool_flexible() for parallelization of your custom function.

2.4. Parallelization 7

eDisGo Documentation, Release 0.0.10

8 Chapter 2. Quickstart

CHAPTER 3

Usage details

As eDisGo is designed to serve as a toolbox, it provides several methods to analyze distribution grids for grid is-
sues and to evaluate measures responding these. We provide two examples, an example script and jupyter
notebook.

Further, we discuss how different features can be used in detail below.

3.1 The fundamental data structure

It’s worth to understand how the fundamental data structure of eDisGo is designed in order to make use of its entire
features.

The class EDisGo serves as the top-level API for setting up your scenario, invocation of data import, analysis of
hosting capacity, grid reinforcement and flexibility measures.

If you want to set up a scenario to do a worst-case analysis of a ding0 grid (see Prerequisites) you simply have to
provide a grid and set the worst_case_analysis parameter. The following example assumes you have a file of
a ding0 grid named “ding0_grids__42.pkl” in current working directory.

from edisgo import EDisGo

edisgo = EDisGo(ding0_grid="ding0_grids__42.pkl",
worst_case_analysis='worst-case-feedin')

You can also provide your own time series for load and feed-in for the analysis.

import pandas as pd

set up load and feed-in time series
timeindex = pd.date_range('1/1/1970', periods=3, freq='H')
feedin_renewables = pd.DataFrame(data={'solar': [0.1, 0.2, 0.3],

'wind': [0.3, 0.15, 0.15]},
index=timeindex)

feedin_dispatchable = pd.DataFrame(data={'coal': [0.5, 0.1, 0.5],
(continues on next page)

9

eDisGo Documentation, Release 0.0.10

(continued from previous page)

'other': [0.3, 0.1, 0.7]},
index=timeindex)

load = pd.DataFrame(data={'residential': [0.00001, 0.00002, 0.00002],
'retail': [0.00005, 0.00005, 0.00005],
'industrial': [0.00002, 0.00003, 0.00002],
'agricultural': [0.00001, 0.000015, 0.00001]},

index=timeindex)

edisgo = EDisGo(ding0_grid="ding0_grids__42.pkl",
timeseries_generation_fluctuating=feedin_renewables,
timeseries_generation_dispatchable=feedin_dispatchable,
timeseries_load=load)

EDisGo also offers methods to generate load time series and feed-in time series for fluctuating generators (see last A
minimum working example). See EDisGo for more information on which options to choose from and what other data
can be provided.

All data is stored in the class Network. The network class serves as an overall data container in eDisGo holding the
grid data for the MVGrid and LVGrid s, Config data, Results, Timeseries, etc. It is linked from multiple
locations and provides hierarchical access to all data. Network itself can be accessed via the EDisGo object.

Access to Network data container object
edisgo.network

The grid data and results can e.g. be accessed via

MV grid instance
edisgo.network.mv_grid

List of LV grid instances
edisgo.network.mv_grid.lv_grids

Results of network analysis
edisgo.network.results

MV grid generators
edisgo.network.mv_grid.generators

The grid topology is represented by separate undirected graphs for the MV grid and each of the LV grids. The Graph
is subclassed from networkx.Graph and extended by extra-functionality. Lines represent edges in the graph. Other
equipment is represented by a node.

3.2 Identify grid issues

As detailed in A minimum working example, once you set up your scenario by instantiating an EDisGo object, you
are ready for an analysis of grid issues (line overloading or voltage band violations) respectively the hosting capacity
of the grid by analyze():

Do non-linear power flow analysis for MV and LV grid
edisgo.analyze()

The analyze function conducts a non-linear power flow using PyPSA.

The range of time analyzed by the power flow analysis is by default defined by the timeindex given to the EDisGo API
but can also be specified by providing the parameter timesteps to analyze.

10 Chapter 3. Usage details

https://networkx.readthedocs.io/en/stable/reference/classes.graph.htmlgraph

eDisGo Documentation, Release 0.0.10

3.3 Grid extension

Grid extension can be invoked by reinforce():

Reinforce grid due to overloading and overvoltage issues
edisgo.reinforce()

You can further specify e.g. if to conduct a combined analysis for MV and LV (regarding allowed voltage deviations)
or if to only calculate grid expansion needs without changing the topology of the graph. See reinforce() for more
information.

Costs for the grid extension measures can be obtained as follows:

Get costs of grid extension
costs = edisgo.network.results.grid_expansion_costs

Further information on the grid reinforcement methodology can be found in section Grid expansion.

3.4 Battery storages

Battery storages can be integrated into the grid as alternative to classical grid extension. A battery in eDisGo is
represented by the class Storage. Using the method integrate_storage() provides a high-level interface
to define the position, size and storage operation, based on user input and predefined rules. A limited set of storage
integration rules are implemented. See StorageControl for available storage integration strategies.

Here is a small example on how to integrate a storage:

define storage parameters
storage_parameters = {'nominal_power': 200}

add storage instance to the grid
edisgo.integrate_storage(position='hvmv_substation_busbar',

timeseries='fifty-fifty',
parameters=storage_parameters)

Further information on the storage integration methodology ‘distribute_storages_mv’ can be found in section Storage
integration.

3.5 Curtailment

The curtailment function is used to spatially distribute the power that is to be curtailed. There are currently two options
for doing this distribution:

• feedin-proportional Distributes the curtailed power to all the fluctuating generators depending on their weather-
dependent availability.

• voltage-based Distributes the curtailed power depending on the exceedance of the allowed voltage deviation at
the nodes of the fluctuating generators.

The input to the curtailment function can be modified to curtail certain technologies or technologies by the weather
cell they are in. Opposite to the load and feed-in time series curtailment time series need to be given in kW. Following
are examples of the different options of how to specify curtailment requirements:

3.3. Grid extension 11

eDisGo Documentation, Release 0.0.10

timeindex = pd.date_range('1/1/1970', periods=3, freq='H')

curtailment is allocated to all solar and wind generators
curtailment = pd.Series(data=[0.0, 5000.0, 3000.0],

index=timeindex)

curtailment is allocated by generator type
curtailment = pd.DataFrame(data={'wind': [0.0, 5000.0, 3000.0],

'solar': [5500.0, 5400.0, 3200.0]},
index=timeindex)

curtailment is allocated by generator type and weather cell
curtailment = pd.DataFrame(data={('wind', 1): [0.0, 5000.0, 3000.0],

('wind', 2): [100.0, 2000.0, 300.0],
('solar', 1): [500.0, 5000.0, 300.0]},

index=timeindex)

Set curtailment by calling the method curtail():

edisgo.curtail(curtailment_methodology='feedin-proportional',
timeseries_curtailment=curtailment)

or with

edisgo.curtail(curtailment_methodology='voltage-based',
timeseries_curtailment=curtailment)

3.6 Plots

EDisGo provides a bunch of predefined plots to e.g. plot the MV grid topology, and line loading and node voltages in
the MV grid or as a histogram.

plot MV grid topology on a map
edisgo.plot_mv_grid_topology()

plot grid expansion costs for lines in the MV grid and stations on a map
edisgo.plot_mv_grid_expansion_costs()

plot voltage histogram
edisgo.histogram_voltage()

See EDisGoRemiport class for more plots and plotting options.

3.7 Results

Results such as voltage levels and line loading from the power flow analysis and grid extension costs are provided
through the Results class and can be accessed the following way:

edisgo.network.results

Get voltage levels at nodes from v_res() and line loading from s_res() or i_res. equipment_changes
holds details about measures performed during grid extension. Associated costs are determined by

12 Chapter 3. Usage details

eDisGo Documentation, Release 0.0.10

grid_expansion_costs. Flexibility measures may not entirely resolve all issues. These unresolved issues are
listed in unresolved_issues.

Results can be saved to csv files with:

edisgo.network.results.save('path/to/results/directory/')

To reimport saved results you can use the EDisGoRemiport class. After instantiating the class you can access
results and plots the same way as you would with the EDisGo class.

import EDisGoReimport class
from edisgo import EDisGoReimport

instantiate EDisGoReimport class
edisgo = EDisGoReimport('path/to/results/directory/')

access results
edisgo.network.results.grid_expansion_costs

plot MV grid topology on a map
edisgo.plot_mv_grid_topology()

3.7. Results 13

eDisGo Documentation, Release 0.0.10

14 Chapter 3. Usage details

CHAPTER 4

Features in detail

4.1 Power flow analysis

In order to analyse voltages and line loadings a non-linear power flow analysis (PF) is conducted. All loads and
generators are modelled as PQ nodes; the slack is modelled as a PV node with a set voltage of 1,p.u. and positioned at
the substation’s secondary side.

4.2 Grid expansion

4.2.1 General methodology

The grid expansion methodology is conducted in reinforce_grid().

The order grid expansion measures are conducted is as follows:

• Reinforce stations and lines due to overloading issues

• Reinforce lines in MV grid due to voltage issues

• Reinforce distribution substations due to voltage issues

• Reinforce lines in LV grid due to voltage issues

• Reinforce stations and lines due to overloading issues

Reinforcement of stations and lines due to overloading issues is performed twice, once in the beginning and again
after fixing voltage issues, as the changed power flows after reinforcing the grid may lead to new overloading issues.
How voltage and overloading issues are identified and solved is shown in figure Grid expansion measures and further
explained in the following sections.

reinforce_grid() offers a few additional options. It is e.g. possible to conduct grid reinforcement measures on
a copy of the graph so that the original grid topology is not changed. It is also possible to only identify necessary
reinforcement measures for two worst-case snapshots in order to save computing time and to set combined or separate
allowed voltage deviation limits for MV and LV. See documentation of reinforce_grid() for more information.

15

eDisGo Documentation, Release 0.0.10

Fig. 4.1: Grid expansion measures

4.2.2 Identification of overloading and voltage issues

Identification of overloading and voltage issues is conducted in check_tech_constraints.

Voltage issues are determined based on allowed voltage deviations set in the config file config_grid_expansion in
section grid_expansion_allowed_voltage_deviations. It is possible to set one allowed voltage deviation that is used for
MV and LV or define separate allowed voltage deviations. Which allowed voltage deviation is used is defined through
the parameter combined_analysis of reinforce_grid(). By default combined_analysis is set to false, resulting
in separate voltage limits for MV and LV, as a combined limit may currently lead to problems if voltage deviation in
MV grid is already close to the allowed limit, in which case the remaining allowed voltage deviation in the LV grids
is close to zero.

Overloading is determined based on allowed load factors that are also defined in the config file config_grid_expansion
in section grid_expansion_load_factors.

Allowed voltage deviations as well as load factors are in most cases different for load and feed-in case. Load and
feed-in case are commonly used worst-cases for grid expansion analyses. Load case defines a situation where all loads
in the grid have a high demand while feed-in by generators is low or zero. In this case power is flowing from the high-
voltage grid to the distribution grid. In the feed-in case there is a high generator feed-in and a small energy demand
leading to a reversed power flow. Load and generation assumptions for the two worst-cases are definded in the config
file config_timeseries in section worst_case_scale_factor (scale factors describe actual power to nominal power ratio
of generators and loads).

When conducting grid reinforcement based on given time series instead of worst-case assumptions, load and feed-in
case also need to be definded to determine allowed voltage deviations and load factors. Therefore, the two cases are
identified based on the generation and load time series of all loads and generators in the grid and defined as follows:

• Load case: positive (
∑︀

𝑙𝑜𝑎𝑑 -
∑︀

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

• Feed-in case: negative (
∑︀

𝑙𝑜𝑎𝑑 -
∑︀

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) -> reverse power flow at HV/MV substation

Grid losses are not taken into account. See assign_load_feedin_case() for more details and implementation.

Check line load

Exceedance of allowed line load of MV and LV lines is checked in mv_line_load() and
lv_line_load(), respectively. The functions use the given load factor and the maximum allowed
current given by the manufacturer (see I_max_th in tables LV cables, MV cables and MV overhead lines)
to calculate the allowed line load of each LV and MV line. If the line load calculated in the power

16 Chapter 4. Features in detail

eDisGo Documentation, Release 0.0.10

flow analysis exceeds the allowed line load, the line is reinforced (see Reinforce lines due to overloading
issues).

Check station load

Exceedance of allowed station load of HV/MV and MV/LV stations is checked in
hv_mv_station_load() and mv_lv_station_load(), respectively. The functions use
the given load factor and the maximum allowed apparent power given by the manufacturer (see S_nom in
tables LV transformers, and MV transformers) to calculate the allowed apparent power of the stations. If
the apparent power calculated in the power flow analysis exceeds the allowed apparent power the station
is reinforced (see Reinforce stations due to overloading issues).

Check line and station voltage deviation

Compliance with allowed voltage deviation limits in MV and LV grids is checked in
mv_voltage_deviation() and lv_voltage_deviation(), respectively. The functions check
if the voltage deviation at a node calculated in the power flow analysis exceeds the allowed voltage devi-
ation. If it does, the line is reinforced (see Reinforce MV/LV stations due to voltage issues or Reinforce
lines due to voltage).

4.2.3 Grid expansion measures

Reinforcement measures are conducted in reinforce_measures. Whereas overloading issues can usually be
solved in one step, except for some cases where the lowered grid impedance through reinforcement measures leads
to new issues, voltage issues can only be solved iteratively. This means that after each reinforcement step a power
flow analysis is conducted and the voltage rechecked. An upper limit for how many iteration steps should be per-
formed is set in order to avoid endless iteration. By default it is set to 10 but can be changed using the parameter
max_while_iterations of reinforce_grid().

Reinforce lines due to overloading issues

Line reinforcement due to overloading is conducted in reinforce_branches_overloading().
In a first step a parallel line of the same line type is installed. If this does not solve the overloading issue
as many parallel standard lines as needed are installed.

Reinforce stations due to overloading issues

Reinforcement of HV/MV and MV/LV stations due to overload-
ing is conducted in extend_substation_overloading() and
extend_distribution_substation_overloading(), respectively. In a first step a
parallel transformer of the same type as the existing transformer is installed. If there is more than one
transformer in the station the smallest transformer that will solve the overloading issue is used. If this
does not solve the overloading issue as many parallel standard transformers as needed are installed.

Reinforce MV/LV stations due to voltage issues

Reinforcement of MV/LV stations due to voltage issues is conducted in
extend_distribution_substation_overvoltage(). To solve voltage issues, a paral-
lel standard transformer is installed.

4.2. Grid expansion 17

eDisGo Documentation, Release 0.0.10

After each station with voltage issues is reinforced, a power flow analysis is conducted and the voltage
rechecked. If there are still voltage issues the process of installing a parallel standard transformer and
conducting a power flow analysis is repeated until voltage issues are solved or until the maximum number
of allowed iterations is reached.

Reinforce lines due to voltage

Reinforcement of lines due to voltage issues is conducted in
reinforce_branches_overvoltage(). In the case of several voltage issues the path to
the node with the highest voltage deviation is reinforced first. Therefore, the line between the secondary
side of the station and the node with the highest voltage deviation is disconnected at a distribution
substation after 2/3 of the path length. If there is no distribution substation where the line can be
disconnected, the node is directly connected to the busbar. If the node is already directly connected to the
busbar a parallel standard line is installed.

Only one voltage problem for each feeder is considered at a time since each measure effects the voltage
of each node in that feeder.

After each feeder with voltage problems has been considered, a power flow analysis is conducted and the
voltage rechecked. The process of solving voltage issues is repeated until voltage issues are solved or
until the maximum number of allowed iterations is reached.

4.2.4 Grid expansion costs

Total grid expansion costs are the sum of costs for each added transformer and line. Costs for lines and transformers
are only distinguished by the voltage level they are installed in and not by the different types. In the case of lines it
is further taken into account wether the line is installed in a rural or an urban area, whereas rural areas are areas with
a population density smaller or equal to 500 people per km2 and urban areas are defined as areas with a population
density higher than 500 people per km2 [DENA]. The population density is calculated by the population and area of
the grid district the line is in (See Grid).

Costs for lines of aggregated loads and generators are not considered in the costs calculation since grids of aggregated
areas are not modeled but aggregated loads and generators are directly connected to the MV busbar.

4.3 Curtailment

eDisGo right now provides two curtailment methodologies called ‘feedin-proportional’ and ‘voltage-based’, that are
implemented in curtailment. Both methods are intended to take a given curtailment target obtained from an
optimization of the EHV and HV grids using eTraGo and allocate it to the generation units in the grids. Curtailment
targets can be specified for all wind and solar generators, by generator type (solar or wind) or by generator type in a
given weather cell. It is also possible to curtail specific generators internally, though a user friendly implementation is
still in the works.

4.3.1 ‘feedin-proportional’

The ‘feedin-proportional’ curtailment is implemented in feedin_proportional(). The curtailment that has to
be met in each time step is allocated equally to all generators depending on their share of total feed-in in that time step.

𝑐𝑔,𝑡 =
𝑎𝑔,𝑡∑︀

𝑔∈𝑔𝑒𝑛𝑠
𝑎𝑔,𝑡

× 𝑐𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 ∀𝑡 ∈ 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

18 Chapter 4. Features in detail

https://github.com/openego/eTraGo

eDisGo Documentation, Release 0.0.10

where 𝑐𝑔,𝑡 is the curtailed power of generator 𝑔 in timestep 𝑡, 𝑎𝑔,𝑡 is the weather-dependent availability of generator 𝑔
in timestep 𝑡 and 𝑐𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 is the given curtailment target (power) for timestep 𝑡 to be allocated to the generators.

4.3.2 ‘voltage-based’

The ‘voltage-based’ curtailment is implemented in voltage_based(). The curtailment that has to be met in each
time step is allocated to all generators depending on the exceedance of the allowed voltage deviation at the nodes of
the generators. The higher the exceedance, the higher the curtailment.

The optional parameter voltage_threshold specifies the threshold for the exceedance of the allowed voltage deviation
above which a generator is curtailed. By default it is set to zero, meaning that all generators at nodes with voltage
deviations that exceed the allowed voltage deviation are curtailed. Generators at nodes where the allowed voltage
deviation is not exceeded are not curtailed. In the case that the required curtailment exceeds the weather-dependent
availability of all generators with voltage deviations above the specified threshold, the voltage threshold is lowered in
steps of 0.01 p.u. until the curtailment target can be met.

Above the threshold, the curtailment is proportional to the exceedance of the allowed voltage deviation.

𝑐𝑔,𝑡
𝑎𝑔,𝑡

= 𝑛 · (𝑉𝑔,𝑡 − 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑔,𝑡) + 𝑜𝑓𝑓𝑠𝑒𝑡

where 𝑐𝑔,𝑡 is the curtailed power of generator 𝑔 in timestep 𝑡, 𝑎𝑔,𝑡 is the weather-dependent availability of generator 𝑔
in timestep 𝑡, 𝑉𝑔,𝑡 is the voltage at generator 𝑔 in timestep 𝑡 and 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑔,𝑡 is the voltage threshold for generator 𝑔
in timestep 𝑡. 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑔,𝑡 is calculated as follows:

𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑔,𝑡 = 𝑉𝑔𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑡 + ∆𝑉𝑔𝑎𝑙𝑙𝑜𝑤𝑒𝑑
+ ∆𝑉𝑜𝑓𝑓𝑠𝑒𝑡,𝑡

where 𝑉𝑔𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑡 is the voltage at the station’s secondary side, ∆𝑉𝑔𝑎𝑙𝑙𝑜𝑤𝑒𝑑
is the allowed voltage deviation in the reverse

power flow and ∆𝑉𝑜𝑓𝑓𝑠𝑒𝑡,𝑡 is the exceedance of the allowed voltage deviation above which generators are curtailed.

𝑛 and 𝑜𝑓𝑓𝑠𝑒𝑡 in the equation above are slope and y-intercept of a linear relation between the curtailment and the ex-
ceedance of the allowed voltage deviation. They are calculated by solving the following linear problem that penalizes
the offset using the python package pyomo:

𝑚𝑖𝑛

(︃∑︁
𝑡

𝑜𝑓𝑓𝑠𝑒𝑡𝑡

)︃

𝑠.𝑡.
∑︁
𝑔

𝑐𝑔,𝑡 = 𝑐𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 ∀𝑔 ∈ (𝑠𝑜𝑙𝑎𝑟, 𝑤𝑖𝑛𝑑)

𝑐𝑔,𝑡 ≤ 𝑎𝑔,𝑡∀𝑔 ∈ (𝑠𝑜𝑙𝑎𝑟, 𝑤𝑖𝑛𝑑), 𝑡

where 𝑐𝑡𝑎𝑟𝑔𝑒𝑡,𝑡 is the given curtailment target (power) for timestep 𝑡 to be allocated to the generators.

4.4 Storage integration

Besides the possibility to connect a storage with a given operation to any node in the grid, eDisGo provides a methodol-
ogy that takes a given storage capacity and allocates it to multiple smaller storages such that it reduces line overloading
and voltage deviations. The methodology is implemented in one_storage_per_feeder(). As the above de-
scribed curtailment allocation methodologies it is intended to be used in combination with eTraGo where storage
capacity and operation is optimized.

For each feeder with load or voltage issues it is checked if integrating a storage will reduce peaks in the feeder, starting
with the feeder with the highest theoretical grid expansion costs. A heuristic approach is used to estimate storage
sizing and siting while storage operation is carried over from the given storage operation.

A more thorough documentation will follow soon.

4.4. Storage integration 19

https://github.com/openego/eTraGo

eDisGo Documentation, Release 0.0.10

4.5 References

20 Chapter 4. Features in detail

CHAPTER 5

Notes to developers

5.1 Installation

Clone repository from GitHub and install in developer mode:

pip3 install -e <path-to-repo>

5.2 Code style

• Documentation of ‘@property‘ functions: Put documentation of getter and setter both in Docstring of get-
ter, see on Stackoverflow

• Order of public/private/protected methods, property decorators, etc. in a class: TBD

5.3 Documentation

Build the docs locally by first setting up the sphinx environment with (executed from top-level folder)

sphinx-apidoc -f -o doc/api edisgo

And then you build the html docs on your computer with

sphinx-build -E -a doc/ doc/_html

21

https://github.com/openego/edisgo
https://stackoverflow.com/a/16025754/6385207

eDisGo Documentation, Release 0.0.10

22 Chapter 5. Notes to developers

CHAPTER 6

Definition and units

6.1 Sign Convention

Generators and Loads in an AC power system can behave either like an inductor or a capacitor. Mathematically, this
has two different sign conventions, either from the generator perspective or from the load perspective. This is defined
by the direction of power flow from the component.

Both sign conventions are used in eDisGo depending upon the components being defined, similar to pypsa.

6.1.1 Generator Sign Convention

While defining time series for Generator, GeneratorFluctuating, and Storage, the generator sign con-
vention is used.

6.1.2 Load Sign Convention

The time series for Load is defined using the load sign convention.

6.2 Reactive Power Sign Convention

Generators and Loads in an AC power system can behave either like an inductor or a capacitor. Mathematically, this
has two different sign conventions, either from the generator perspective or from the load perspective.

Both sign conventions are used in eDisGo, similar to pypsa. While defining time series for Generator,
GeneratorFluctuating, and Storage, the generator sign convention is used. This means that when the reac-
tive power (Q) is positive, the component shows capacitive behaviour and when the reactive power (Q) is negative, the
component shows inductive behaviour.

23

eDisGo Documentation, Release 0.0.10

Fig. 6.1: Generator sign convention in detail

Fig. 6.2: Load sign convention in detail

24 Chapter 6. Definition and units

eDisGo Documentation, Release 0.0.10

The time series for Load is defined using the load sign convention. This means that when the reactive power (Q) is
positive, the component shows inductive behaviour and when the reactive power (Q) is negative, the component shows
capacitive behaviour. This is the direct opposite of the generator sign convention.

6.3 Units

Table 6.1: List of variables and units
Variable Symbol Unit Comment
Current I A
Length l km
Active Power P kW In PyPSA representation (pypsa) MW are

used
Reactive Power Q kvar In PyPSA representation (pypsa) MVar are

used
Apparent Power S kVA In PyPSA representation (pypsa) MVA are

used
Resistance R Ohm

or
Ohm/km

Ohm/km applies to lines

Reactance X Ohm
or
Ohm/km

Ohm/km applies to lines

Voltage V kV
Inductance L mH/km
Capacitance C µF/km
Costs • kEUR

6.3. Units 25

eDisGo Documentation, Release 0.0.10

26 Chapter 6. Definition and units

CHAPTER 7

Default configuration data

Following you find the default configuration files.

7.1 config_db_tables

The config file config_db_tables.cfg holds data about which database connection to use from your saved
database connections and which dataprocessing version.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

[data_source]

oedb_data_source = versioned

[model_draft]

conv_generators_prefix = t_ego_supply_conv_powerplant_
conv_generators_suffix = _mview
re_generators_prefix = t_ego_supply_res_powerplant_
re_generators_suffix = _mview
res_feedin_data = EgoRenewableFeedin
load_data = EgoDemandHvmvDemand
load_areas = EgoDemandLoadarea

#conv_generators_nep2035 = t_ego_supply_conv_powerplant_nep2035_mview
#conv_generators_ego100 = ego_supply_conv_powerplant_ego100_mview
#re_generators_nep2035 = t_ego_supply_res_powerplant_nep2035_mview

(continues on next page)

27

eDisGo Documentation, Release 0.0.10

(continued from previous page)

#re_generators_ego100 = t_ego_supply_res_powerplant_ego100_mview

[versioned]

conv_generators_prefix = t_ego_dp_conv_powerplant_
conv_generators_suffix = _mview
re_generators_prefix = t_ego_dp_res_powerplant_
re_generators_suffix = _mview
res_feedin_data = EgoRenewableFeedin
load_data = EgoDemandHvmvDemand
load_areas = EgoDemandLoadarea

version = v0.4.5

7.2 config_grid_expansion

The config file config_grid_expansion.cfg holds data mainly needed to determine grid expansion needs and
costs - these are standard equipment to use in grid expansion and its costs, as well as allowed voltage deviations and
line load factors.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

[grid_expansion_standard_equipment]

standard equipment
==================
Standard equipment for grid expansion measures. Source: Rehtanz et. al.:
→˓"Verteilnetzstudie für das Land Baden-Württemberg", 2017.
hv_mv_transformer = 40 MVA
mv_lv_transformer = 630 kVA
mv_line = NA2XS2Y 3x1x185 RM/25
lv_line = NAYY 4x1x150

[grid_expansion_allowed_voltage_deviations]

allowed voltage deviations
==========================
COMBINED MV+LV

hv_mv_trafo_offset:
offset which is set at HV-MV station
(pos. if op. voltage is increased, neg. if decreased)
hv_mv_trafo_offset = 0.0

hv_mv_trafo_control_deviation:
control deviation of HV-MV station
(always pos. in config; pos. or neg. usage depending on case in edisgo)
hv_mv_trafo_control_deviation = 0.0

(continues on next page)

28 Chapter 7. Default configuration data

eDisGo Documentation, Release 0.0.10

(continued from previous page)

mv_lv_max_v_deviation:
max. allowed voltage deviation according to DIN EN 50160
caution: offset and control deviation at HV-MV station must be considered in
→˓calculations!
mv_lv_feedin_case_max_v_deviation = 0.1
mv_lv_load_case_max_v_deviation = 0.1

MV ONLY

mv_load_case_max_v_deviation:
max. allowed voltage deviation in MV grids (load case)
mv_load_case_max_v_deviation = 0.015

mv_feedin_case_max_v_deviation:
max. allowed voltage deviation in MV grids (feedin case)
according to BDEW
mv_feedin_case_max_v_deviation = 0.05

LV ONLY

max. allowed voltage deviation in LV grids (load case)
lv_load_case_max_v_deviation = 0.065

max. allowed voltage deviation in LV grids (feedin case)
according to VDE-AR-N 4105
lv_feedin_case_max_v_deviation = 0.035

max. allowed voltage deviation in MV/LV stations (load case)
mv_lv_station_load_case_max_v_deviation = 0.02

max. allowed voltage deviation in MV/LV stations (feedin case)
mv_lv_station_feedin_case_max_v_deviation = 0.015

[grid_expansion_load_factors]

load factors
============
Source: Rehtanz et. al.: "Verteilnetzstudie für das Land Baden-Württemberg", 2017.
mv_load_case_transformer = 0.5
mv_load_case_line = 0.5
mv_feedin_case_transformer = 1.0
mv_feedin_case_line = 1.0

lv_load_case_transformer = 1.0
lv_load_case_line = 1.0
lv_feedin_case_transformer = 1.0
lv_feedin_case_line = 1.0

costs
============

[costs_cables]

costs in kEUR/km
costs for cables without earthwork are taken from [1] (costs for standard
cables are used here as representative since they have average costs), costs

(continues on next page)

7.2. config_grid_expansion 29

eDisGo Documentation, Release 0.0.10

(continued from previous page)

including earthwork are taken from [2]
[1] https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/
→˓Unternehmen_Institutionen/Netzentgelte/Anreizregulierung/GA_
→˓AnalytischeKostenmodelle.pdf?__blob=publicationFile&v=1
[2] https://shop.dena.de/fileadmin/denashop/media/Downloads_Dateien/esd/9100_dena-
→˓Verteilnetzstudie_Abschlussbericht.pdf
costs including earthwork costs depend on population density according to [2]
here "rural" corresponds to a population density of <= 500 people/km2

and "urban" corresponds to a population density of > 500 people/km2

lv_cable = 9
lv_cable_incl_earthwork_rural = 60
lv_cable_incl_earthwork_urban = 100
mv_cable = 20
mv_cable_incl_earthwork_rural = 80
mv_cable_incl_earthwork_urban = 140

[costs_transformers]

costs in kEUR, source: DENA Verteilnetzstudie
lv = 10
mv = 1000

7.3 config_timeseries

The config file config_timeseries.cfg holds data to define the two worst-case scenarions heavy load flow
(‘load case’) and reverse power flow (‘feed-in case’) used in conventional grid expansion planning, power factors and
modes (inductive or capacitative) to generate reactive power time series, as well as configurations of the demandlib in
case load time series are generated using the oemof demandlib.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

This file contains relevant data to generate load and feed-in time series.
Peakload consumption ratios and scale factors are used in worst-case scenarios.
Power factors are used to generate reactive power time series.

[peakload_consumption_ratio]

peakload consumption ratios
===========================
ratios of peak load to annual consumption per sector based on BDEW synthetic
load profiles; used only in worst case analyses
residential = 0.00021372
retail = 0.0002404
industrial = 0.000132
agricultural = 0.00024036

[worst_case_scale_factor]

(continues on next page)

30 Chapter 7. Default configuration data

eDisGo Documentation, Release 0.0.10

(continued from previous page)

scale factors
===========================
scale factors describe actual power to nominal power ratio of generators and loads
→˓in worst-case scenarios
following values provided by "dena-Verteilnetzstudie. Ausbau- und
Innovationsbedarf der Stromverteilnetze in Deutschland bis 2030", .p. 98

mv_feedin_case_load = 0.15
lv_feedin_case_load = 0.1
mv_load_case_load = 1.0
lv_load_case_load = 1.0

feedin_case_feedin_pv = 0.85
feedin_case_feedin_other = 1
load_case_feedin_pv = 0
load_case_feedin_other = 0

[reactive_power_factor]

power factors
===========================
power factors used to generate reactive power time series for loads and generators

mv_gen = 0.9
mv_load = 0.9
mv_storage = 0.9
lv_gen = 0.95
lv_load = 0.95
lv_storage = 0.95

[reactive_power_mode]

power factor modes
===========================
power factor modes used to generate reactive power time series for loads and
→˓generators

mv_gen = inductive
mv_load = inductive
mv_storage = inductive
lv_gen = inductive
lv_load = inductive
lv_storage = inductive

[demandlib]

demandlib data
===========================
data used in the demandlib to generate industrial load profile
see IndustrialProfile in https://github.com/oemof/demandlib/blob/master/demandlib/
→˓particular_profiles.py
for further information

scaling factors for night and day of weekdays and weekend days
week_day = 0.8
week_night = 0.6
weekend_day = 0.6

(continues on next page)

7.3. config_timeseries 31

eDisGo Documentation, Release 0.0.10

(continued from previous page)

weekend_night = 0.6
tuple specifying the beginning/end of a workday (e.g. 18:00)
day_start = 6:00
day_end = 22:00

7.4 config_grid

The config file config_grid.cfg holds data to specify parameters used when connecting new generators to the
grid and where to position disconnecting points.

This file is part of eDisGo, a python package for distribution grid
analysis and optimization.
#
It is developed in the project open_eGo: https://openegoproject.wordpress.com
#
eDisGo lives on github: https://github.com/openego/edisgo/
The documentation is available on RTD: http://edisgo.readthedocs.io

Config file to specify parameters used when connecting new generators to the grid
→˓and
where to position disconnecting points.

[geo]

WGS84: 4326
srid = 4326

[grid_connection]

branch_detour_factor:
normally, lines do not go straight from A to B due to obstacles etc. Therefore,
→˓a detour factor is used.
unit: -
branch_detour_factor = 1.3

conn_buffer_radius:
radius used to find connection targets
unit: m
conn_buffer_radius = 2000

conn_buffer_radius_inc:
radius which is incrementally added to connect_buffer_radius as long as no
→˓target is found
unit: m
conn_buffer_radius_inc = 1000

conn_diff_tolerance:

(continues on next page)

32 Chapter 7. Default configuration data

eDisGo Documentation, Release 0.0.10

(continued from previous page)

threshold which is used to determine if 2 objects are on the same position
unit: -
conn_diff_tolerance = 0.0001

random_seed = 111344501344111

[disconnecting_point]

Positioning of disconnecting points: Can be position at location of most
balanced load or generation. Choose load, generation, loadgen
position = load

7.4. config_grid 33

eDisGo Documentation, Release 0.0.10

34 Chapter 7. Default configuration data

CHAPTER 8

Equipment data

The following tables hold all data of cables, lines and transformers used.

Table 8.1: LV cables
name U_n I_max_th R_per_km L_per_km
#- V A ohm/km mH/km
NAYY 4x1x300 400 419 0.1 0.279
NAYY 4x1x240 400 364 0.125 0.254
NAYY 4x1x185 400 313 0.164 0.256
NAYY 4x1x150 400 275 0.206 0.256
NAYY 4x1x120 400 245 0.253 0.256
NAYY 4x1x95 400 215 0.320 0.261
NAYY 4x1x50 400 144 0.449 0.270
NAYY 4x1x35 400 123 0.868 0.271

Table 8.2: MV cables
name U_n I_max_th R_per_km L_per_km C_per_km
#- kV A ohm/km mH/km uF/km
NA2XS2Y 3x1x185 RM/25 10 357 0.164 0.38 0.41
NA2XS2Y 3x1x240 RM/25 10 417 0.125 0.36 0.47
NA2XS2Y 3x1x300 RM/25 10 466 0.1 0.35 0.495
NA2XS2Y 3x1x400 RM/35 10 535 0.078 0.34 0.57
NA2XS2Y 3x1x500 RM/35 10 609 0.061 0.32 0.63
NA2XS2Y 3x1x150 RE/25 20 319 0.206 0.4011 0.24
NA2XS2Y 3x1x240 20 417 0.13 0.3597 0.304
NA2XS(FL)2Y 3x1x300 RM/25 20 476 0.1 0.37 0.25
NA2XS(FL)2Y 3x1x400 RM/35 20 525 0.078 0.36 0.27
NA2XS(FL)2Y 3x1x500 RM/35 20 598 0.06 0.34 0.3

35

eDisGo Documentation, Release 0.0.10

Table 8.3: MV overhead lines
name U_n I_max_th R_per_km L_per_km C_per_km
#- kV A ohm/km mH/km uF/km
48-AL1/8-ST1A 10 210 0.35 1.11 0.0104
94-AL1/15-ST1A 10 350 0.33 1.05 0.0112
122-AL1/20-ST1A 10 410 0.31 0.99 0.0115
48-AL1/8-ST1A 20 210 0.37 1.18 0.0098
94-AL1/15-ST1A 20 350 0.35 1.11 0.0104
122-AL1/20-ST1A 20 410 0.34 1.08 0.0106

Table 8.4: LV transformers
name S_nom u_kr P_k
kVA % W
100 kVA 100 4 1750
160 kVA 160 4 2350
250 kVA 250 4 3250
400 kVA 400 4 4600
630 kVA 630 4 6500
800 kVA 800 6 8400
1000 kVA 1000 6 10500

Table 8.5: MV transformers
name S_nom
kVA
20 MVA 20000
32 MVA 32000
40 MVA 40000
63 MVA 63000

36 Chapter 8. Equipment data

CHAPTER 9

API

9.1 edisgo package

9.1.1 Subpackages

edisgo.data package

Submodules

edisgo.data.export_data module

edisgo.data.import_data module

edisgo.data.import_data.import_from_ding0(file, network)
Import an eDisGo grid topology from Ding0 data.

This import method is specifically designed to load grid topology data in the format as Ding0 provides it via
pickles.

The import of the grid topology includes

• the topology itself

• equipment parameter

• generators incl. location, type, subtype and capacity

• loads incl. location and sectoral consumption

Parameters

• file (str or ding0.core.NetworkDing0) – If a str is provided it is assumed it
points to a pickle with Ding0 grid data. This file will be read. If an object of the type
ding0.core.NetworkDing0 data will be used directly from this object.

37

https://github.com/openego/ding0
https://github.com/openego/ding0
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

• network (Network) – The eDisGo data container object

Notes

Assumes ding0.core.NetworkDing0 provided by file contains only data of one mv_grid_district.

edisgo.data.import_data.import_generators(network, data_source=None, file=None)
Import generator data from source.

The generator data include

• nom. capacity

• type ToDo: specify!

• timeseries

Additional data which can be processed (e.g. used in OEDB data) are

• location

• type

• subtype

• capacity

Parameters

• network (Network) – The eDisGo container object

• data_source (str) – Data source. Supported sources:

– ’oedb’

• file (str) – File to import data from, required when using file-based sources.

Returns List of generators

Return type pandas.DataFrame

edisgo.data.import_data.import_feedin_timeseries(config_data, weather_cell_ids)
Import RES feed-in time series data and process

Parameters

• config_data (dict) – Dictionary containing config data from config files.

• weather_cell_ids (list) – List of weather cell id’s (integers) to obtain feed-in data
for.

Returns Feedin time series

Return type pandas.DataFrame

edisgo.data.import_data.import_load_timeseries(config_data, data_source,
mv_grid_id=None, year=None)

Import load time series

Parameters

• config_data (dict) – Dictionary containing config data from config files.

• data_source (str) – Specify type of data source. Available data sources are

38 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

– ’demandlib’ Determine a load time series with the use of the demandlib. This calculates
standard load profiles for 4 different sectors.

• mv_grid_id (str) – MV grid ID as used in oedb. Provide this if data_source is ‘oedb’.
Default: None.

• year (int) – Year for which to generate load time series. Provide this if data_source is
‘demandlib’. Default: None.

Returns Load time series

Return type pandas.DataFrame

Module contents

edisgo.flex_opt package

Submodules

edisgo.flex_opt.check_tech_constraints module

edisgo.flex_opt.check_tech_constraints.mv_line_load(network)
Checks for over-loading issues in MV grid.

Parameters network (Network) –

Returns Dataframe containing over-loaded MV lines, their maximum relative over-loading and
the corresponding time step. Index of the dataframe are the over-loaded lines of type Line.
Columns are ‘max_rel_overload’ containing the maximum relative over-loading as float and
‘time_index’ containing the corresponding time step the over-loading occured in as pan-
das.Timestamp.

Return type pandas.DataFrame

Notes

Line over-load is determined based on allowed load factors for feed-in and load cases that are defined in the
config file ‘config_grid_expansion’ in section ‘grid_expansion_load_factors’.

edisgo.flex_opt.check_tech_constraints.lv_line_load(network)
Checks for over-loading issues in LV grids.

Parameters network (Network) –

Returns Dataframe containing over-loaded LV lines, their maximum relative over-loading and the
corresponding time step. Index of the dataframe are the over-loaded lines of type Line.
Columns are ‘max_rel_overload’ containing the maximum relative over-loading as float and
‘time_index’ containing the corresponding time step the over-loading occured in as pan-
das.Timestamp.

Return type pandas.DataFrame

Notes

Line over-load is determined based on allowed load factors for feed-in and load cases that are defined in the
config file ‘config_grid_expansion’ in section ‘grid_expansion_load_factors’.

9.1. edisgo package 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

edisgo.flex_opt.check_tech_constraints.hv_mv_station_load(network)
Checks for over-loading of HV/MV station.

Parameters network (Network) –

Returns Dataframe containing over-loaded HV/MV stations, their apparent power at maximal over-
loading and the corresponding time step. Index of the dataframe are the over-loaded stations of
type MVStation. Columns are ‘s_pfa’ containing the apparent power at maximal over-loading
as float and ‘time_index’ containing the corresponding time step the over-loading occured in as
pandas.Timestamp.

Return type pandas.DataFrame

Notes

Over-load is determined based on allowed load factors for feed-in and load cases that are defined in the config
file ‘config_grid_expansion’ in section ‘grid_expansion_load_factors’.

edisgo.flex_opt.check_tech_constraints.mv_lv_station_load(network)
Checks for over-loading of MV/LV stations.

Parameters network (Network) –

Returns Dataframe containing over-loaded MV/LV stations, their apparent power at maximal over-
loading and the corresponding time step. Index of the dataframe are the over-loaded stations of
type LVStation. Columns are ‘s_pfa’ containing the apparent power at maximal over-loading
as float and ‘time_index’ containing the corresponding time step the over-loading occured in as
pandas.Timestamp.

Return type pandas.DataFrame

Notes

Over-load is determined based on allowed load factors for feed-in and load cases that are defined in the config
file ‘config_grid_expansion’ in section ‘grid_expansion_load_factors’.

edisgo.flex_opt.check_tech_constraints.mv_voltage_deviation(network, volt-
age_levels=’mv_lv’)

Checks for voltage stability issues in MV grid.

Parameters

• network (Network) –

• voltage_levels (str) – Specifies which allowed voltage deviations to use. Possible
options are:

– ’mv_lv’ This is the default. The allowed voltage deviation for nodes in the MV grid is the
same as for nodes in the LV grid. Further load and feed-in case are not distinguished.

– ’mv’ Use this to handle allowed voltage deviations in the MV and LV grid differently.
Here, load and feed-in case are differentiated as well.

Returns Dictionary with MVGrid as key and a pandas.DataFrame with its critical nodes, sorted
descending by voltage deviation, as value. Index of the dataframe are all nodes (of type
Generator, Load, etc.) with over-voltage issues. Columns are ‘v_mag_pu’ containing the
maximum voltage deviation as float and ‘time_index’ containing the corresponding time step
the over-voltage occured in as pandas.Timestamp.

Return type dict

40 Chapter 9. API

http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.0.10

Notes

Voltage issues are determined based on allowed voltage deviations defined in the config file ‘con-
fig_grid_expansion’ in section ‘grid_expansion_allowed_voltage_deviations’.

edisgo.flex_opt.check_tech_constraints.lv_voltage_deviation(network,
mode=None, volt-
age_levels=’mv_lv’)

Checks for voltage stability issues in LV grids.

Parameters

• network (Network) –

• mode (None or String) – If None voltage at all nodes in LV grid is checked. If mode
is set to ‘stations’ only voltage at busbar is checked.

• voltage_levels (str) – Specifies which allowed voltage deviations to use. Possible
options are:

– ’mv_lv’ This is the default. The allowed voltage deviation for nodes in the MV grid is the
same as for nodes in the LV grid. Further load and feed-in case are not distinguished.

– ’lv’ Use this to handle allowed voltage deviations in the MV and LV grid differently.
Here, load and feed-in case are differentiated as well.

Returns Dictionary with LVGrid as key and a pandas.DataFrame with its critical nodes, sorted
descending by voltage deviation, as value. Index of the dataframe are all nodes (of type
Generator, Load, etc.) with over-voltage issues. Columns are ‘v_mag_pu’ containing the
maximum voltage deviation as float and ‘time_index’ containing the corresponding time step
the over-voltage occured in as pandas.Timestamp.

Return type dict

Notes

Voltage issues are determined based on allowed voltage deviations defined in the config file ‘con-
fig_grid_expansion’ in section ‘grid_expansion_allowed_voltage_deviations’.

edisgo.flex_opt.check_tech_constraints.check_ten_percent_voltage_deviation(network)
Checks if 10% criteria is exceeded.

Parameters network (Network) –

edisgo.flex_opt.costs module

edisgo.flex_opt.costs.grid_expansion_costs(network, without_generator_import=False)
Calculates grid expansion costs for each reinforced transformer and line in kEUR.

edisgo.flex_opt.costs.network

Type Network

edisgo.flex_opt.costs.without_generator_import
If True excludes lines that were added in the generator import to connect new generators to the grid from
calculation of grid expansion costs. Default: False.

Type Boolean

9.1. edisgo package 41

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.0.10

Returns

DataFrame containing type and costs plus in the case of lines the line length and number of
parallel lines of each reinforced transformer and line. Index of the DataFrame is the respective
object that can either be a Line or a Transformer. Columns are the following:

type: String Transformer size or cable name

total_costs: float Costs of equipment in kEUR. For lines the line length and number of parallel
lines is already included in the total costs.

quantity: int For transformers quantity is always one, for lines it specifies the number of par-
allel lines.

line_length: float Length of line or in case of parallel lines all lines in km.

voltage_level [str {‘lv’ | ‘mv’ | ‘mv/lv’}] Specifies voltage level the equipment is in.

mv_feeder [Line] First line segment of half-ring used to identify in which feeder the grid
expansion was conducted in.

Return type pandas.DataFrame<dataframe>

Notes

Total grid expansion costs can be obtained through self.grid_expansion_costs.total_costs.sum().

edisgo.flex_opt.curtailment module

edisgo.flex_opt.curtailment.voltage_based(feedin, generators, curtailment_timeseries,
edisgo, curtailment_key, **kwargs)

Implements curtailment methodology ‘voltage-based’.

The curtailment that has to be met in each time step is allocated depending on the exceedance of the allowed
voltage deviation at the nodes of the generators. The higher the exceedance, the higher the curtailment.

The optional parameter voltage_threshold specifies the threshold for the exceedance of the allowed voltage
deviation above which a generator is curtailed. By default it is set to zero, meaning that all generators at nodes
with voltage deviations that exceed the allowed voltage deviation are curtailed. Generators at nodes where the
allowed voltage deviation is not exceeded are not curtailed. In the case that the required curtailment exceeds
the weather-dependent availability of all generators with voltage deviations above the specified threshold, the
voltage threshold is lowered in steps of 0.01 p.u. until the curtailment target can be met.

Above the threshold, the curtailment is proportional to the exceedance of the allowed voltage deviation. In order
to find the linear relation between the curtailment and the voltage difference a linear problem is formulated and
solved using the python package pyomo. See documentation for further information.

Parameters

• feedin (pandas.DataFrame) – Dataframe holding the feed-in of each generator in kW
for the technology (and weather cell) specified in curtailment_key parameter. Index of the
dataframe is a pandas.DatetimeIndex. Columns are the representatives of the fluctuating
generators.

• generators (pandas.DataFrame) – Dataframe with all generators of the type (and in
weather cell) specified in curtailment_key parameter. See return value of edisgo.grid.
tools.get_gen_info() for more information.

42 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

• curtailment_timeseries (pandas.Series) – The curtailment in kW to be dis-
tributed amongst the generators in generators parameter. Index of the series is a pan-
das.DatetimeIndex.

• edisgo (edisgo.grid.network.EDisGo) –

• curtailment_key (str or tuple with str) – The technology and weather cell ID if
tuple or only the technology if str the curtailment is specified for.

• voltage_threshold (float) – The node voltage below which no curtailment is as-
signed to the respective generator if not necessary. Default: 0.0.

• solver (str) – The solver used to optimize the curtailment assigned to the generator.
Possible options are:

– ’cbc’ coin-or branch and cut solver

– ’glpk’ gnu linear programming kit solver

– any other available compatible with ‘pyomo’ like ‘gurobi’ or ‘cplex’

Default: ‘cbc’

edisgo.flex_opt.curtailment.feedin_proportional(feedin, generators, curtail-
ment_timeseries, edisgo, curtail-
ment_key, **kwargs)

Implements curtailment methodology ‘feedin-proportional’.

The curtailment that has to be met in each time step is allocated equally to all generators depending on their
share of total feed-in in that time step.

Parameters

• feedin (pandas.DataFrame) – Dataframe holding the feed-in of each generator in kW
for the technology (and weather cell) specified in curtailment_key parameter. Index of the
dataframe is a pandas.DatetimeIndex. Columns are the representatives of the fluctuating
generators.

• generators (pandas.DataFrame) – Dataframe with all generators of the type (and in
weather cell) specified in curtailment_key parameter. See return value of edisgo.grid.
tools.get_gen_info() for more information.

• curtailment_timeseries (pandas.Series) – The curtailment in kW to be dis-
tributed amongst the generators in generators parameter. Index of the series is a pan-
das.DatetimeIndex.

• edisgo (edisgo.grid.network.EDisGo) –

• curtailment_key (str or tuple with str) – The technology and weather cell ID if
tuple or only the technology if str the curtailment is specified for.

edisgo.flex_opt.exceptions module

exception edisgo.flex_opt.exceptions.Error
Bases: Exception

Base class for exceptions in this module.

exception edisgo.flex_opt.exceptions.MaximumIterationError(message)
Bases: edisgo.flex_opt.exceptions.Error

Exception raised when maximum number of iterations in grid reinforcement is exceeded.

9.1. edisgo package 43

http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

eDisGo Documentation, Release 0.0.10

message -- explanation of the error

exception edisgo.flex_opt.exceptions.ImpossibleVoltageReduction(message)
Bases: edisgo.flex_opt.exceptions.Error

Exception raised when voltage issue cannot be solved.

message -- explanation of the error

edisgo.flex_opt.reinforce_grid module

edisgo.flex_opt.reinforce_grid.reinforce_grid(edisgo, timesteps_pfa=None,
copy_graph=False,
max_while_iterations=10, com-
bined_analysis=False)

Evaluates grid reinforcement needs and performs measures.

This function is the parent function for all grid reinforcements.

Parameters

• edisgo (EDisGo) – The eDisGo API object

• timesteps_pfa (str or pandas.DatetimeIndex or pandas.Timestamp) – timesteps_pfa
specifies for which time steps power flow analysis is conducted and therefore which time
steps to consider when checking for over-loading and over-voltage issues. It defaults to
None in which case all timesteps in timeseries.timeindex (see TimeSeries) are used.
Possible options are:

– None Time steps in timeseries.timeindex (see TimeSeries) are used.

– ’snapshot_analysis’ Reinforcement is conducted for two worst-case snapshots. See
edisgo.tools.tools.select_worstcase_snapshots() for further expla-
nation on how worst-case snapshots are chosen. Note: If you have large time series
choosing this option will save calculation time since power flow analysis is only con-
ducted for two time steps. If your time series already represents the worst-case keep the
default value of None because finding the worst-case snapshots takes some time.

– pandas.DatetimeIndex or pandas.Timestamp Use this option to explicitly choose which
time steps to consider.

• copy_graph (Boolean) – If True reinforcement is conducted on a copied graph and
discarded. Default: False.

• max_while_iterations (int) – Maximum number of times each while loop is con-
ducted.

• combined_analysis (Boolean) – If True allowed voltage deviations for combined
analysis of MV and LV grid are used. If False different allowed voltage deviations for
MV and LV are used. See also config section grid_expansion_allowed_voltage_deviations.
Default: False.

Returns Returns the Results object holding grid expansion costs, equipment changes, etc.

Return type Results

Notes

See Features in detail for more information on how grid reinforcement is conducted.

44 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/functions.html#int

eDisGo Documentation, Release 0.0.10

edisgo.flex_opt.reinforce_measures module

edisgo.flex_opt.reinforce_measures.extend_distribution_substation_overloading(network,
crit-
i-
cal_stations)

Reinforce MV/LV substations due to overloading issues.

In a first step a parallel transformer of the same kind is installed. If this is not sufficient as many standard
transformers as needed are installed.

Parameters

• network (Network) –

• critical_stations (pandas.DataFrame) – Dataframe containing over-loaded MV/LV
stations, their apparent power at maximal over-loading and the corresponding time step.
Index of the dataframe are the over-loaded stations of type LVStation. Columns are
‘s_pfa’ containing the apparent power at maximal over-loading as float and ‘time_index’
containing the corresponding time step the over-loading occured in as pandas.Timestamp.
See mv_lv_station_load() for more information.

Returns Dictionary with lists of added and removed transformers.

Return type dict

edisgo.flex_opt.reinforce_measures.extend_distribution_substation_overvoltage(network,
crit-
i-
cal_stations)

Reinforce MV/LV substations due to voltage issues.

A parallel standard transformer is installed.

Parameters

• network (Network) –

• critical_stations (dict) – Dictionary with LVGrid as key and a pan-
das.DataFrame with its critical station and maximum voltage deviation as value. Index of the
dataframe is the LVStation with over-voltage issues. Columns are ‘v_mag_pu’ contain-
ing the maximum voltage deviation as float and ‘time_index’ containing the corresponding
time step the over-voltage occured in as pandas.Timestamp.

Returns

Return type Dictionary with lists of added transformers.

edisgo.flex_opt.reinforce_measures.extend_substation_overloading(network,
criti-
cal_stations)

Reinforce HV/MV station due to overloading issues.

In a first step a parallel transformer of the same kind is installed. If this is not sufficient as many standard
transformers as needed are installed.

Parameters

• network (Network) –

• critical_stations (pandas:pandas.DataFrame<dataframe>) – Dataframe contain-
ing over-loaded HV/MV stations, their apparent power at maximal over-loading and the
corresponding time step. Index of the dataframe are the over-loaded stations of type

9.1. edisgo package 45

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp

eDisGo Documentation, Release 0.0.10

MVStation. Columns are ‘s_pfa’ containing the apparent power at maximal over-loading
as float and ‘time_index’ containing the corresponding time step the over-loading occured
in as pandas.Timestamp. See hv_mv_station_load() for more information.

Returns

Return type Dictionary with lists of added and removed transformers.

edisgo.flex_opt.reinforce_measures.reinforce_branches_overvoltage(network,
grid,
crit_nodes)

Reinforce MV and LV grid due to voltage issues.

Parameters

• network (Network) –

• grid (MVGrid or LVGrid) –

• crit_nodes (pandas.DataFrame) – Dataframe with critical nodes, sorted descending by
voltage deviation. Index of the dataframe are nodes (of type Generator, Load, etc.) with
over-voltage issues. Columns are ‘v_mag_pu’ containing the maximum voltage deviation
as float and ‘time_index’ containing the corresponding time step the over-voltage occured
in as pandas.Timestamp.

Returns

• Dictionary with Line and the number of lines

• added.

Notes

Reinforce measures:

1. Disconnect line at 2/3 of the length between station and critical node farthest away from the station and install
new standard line 2. Install parallel standard line

In LV grids only lines outside buildings are reinforced; loads and generators in buildings cannot be directly
connected to the MV/LV station.

In MV grids lines can only be disconnected at LVStations because they have switch disconnectors needed to
operate the lines as half rings (loads in MV would be suitable as well because they have a switch bay (Schaltfeld)
but loads in dingo are only connected to MV busbar). If there is no suitable LV station the generator is directly
connected to the MV busbar. There is no need for a switch disconnector in that case because generators don’t
need to be n-1 safe.

edisgo.flex_opt.reinforce_measures.reinforce_branches_overloading(network,
crit_lines)

Reinforce MV or LV grid due to overloading.

Parameters

• network (Network) –

• crit_lines (pandas.DataFrame) – Dataframe containing over-loaded lines, their maxi-
mum relative over-loading and the corresponding time step. Index of the dataframe are the
over-loaded lines of type Line. Columns are ‘max_rel_overload’ containing the maximum
relative over-loading as float and ‘time_index’ containing the corresponding time step the
over-loading occured in as pandas.Timestamp.

Returns

46 Chapter 9. API

http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp

eDisGo Documentation, Release 0.0.10

• Dictionary with Line and the number of Lines

• added.

Notes

Reinforce measures:

1. Install parallel line of the same type as the existing line (Only if line is a cable, not an overhead line.
Otherwise a standard equipment cable is installed right away.)

2. Remove old line and install as many parallel standard lines as needed.

edisgo.flex_opt.storage_integration module

edisgo.flex_opt.storage_integration.storage_at_hvmv_substation(mv_grid, pa-
rameters,
mode=None)

Place storage at HV/MV substation bus bar.

Parameters

• mv_grid (MVGrid) – MV grid instance

• parameters (dict) – Dictionary with storage parameters. Must at least contain ‘nomi-
nal_power’. See StorageControl for more information.

• mode (str, optional) – Operational mode. See StorageControl for possible options
and more information. Default: None.

Returns Created storage instance and newly added line to connect storage.

Return type Storage, Line

edisgo.flex_opt.storage_integration.set_up_storage(node, parameters, volt-
age_level=None, opera-
tional_mode=None)

Sets up a storage instance.

Parameters

• node (Station or BranchTee) – Node the storage will be connected to.

• parameters (dict, optional) – Dictionary with storage parameters. Must at least contain
‘nominal_power’. See StorageControl for more information.

• voltage_level (str, optional) – This parameter only needs to be provided if node is
of type LVStation. In that case voltage_level defines which side of the LV station the
storage is connected to. Valid options are ‘lv’ and ‘mv’. Default: None.

• operational_mode (str, optional) – Operational mode. See StorageControl for
possible options and more information. Default: None.

edisgo.flex_opt.storage_integration.connect_storage(storage, node)
Connects storage to the given node.

The storage is connected by a cable The cable the storage is connected with is selected to be able to carry the
storages nominal power and equal amount of reactive power. No load factor is considered.

Parameters

• storage (Storage) – Storage instance to be integrated into the grid.

9.1. edisgo package 47

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

• node (Station or BranchTee) – Node the storage will be connected to.

Returns Newly added line to connect storage.

Return type Line

edisgo.flex_opt.storage_operation module

edisgo.flex_opt.storage_operation.fifty_fifty(network, storage, feedin_threshold=0.5)
Operational mode where the storage operation depends on actual power by generators. If cumulative generation
exceeds 50% of nominal power, the storage is charged. Otherwise, the storage is discharged. The time series for
active power is written into the storage.

Parameters

• network (Network) –

• storage (Storage) – Storage instance for which to generate time series.

• feedin_threshold (float) – Ratio of generation to installed power specifying when
to charge or discharge the storage. If feed-in threshold is e.g. 0.5 the storage will be charged
when the total generation is 50% of the installed generator capacity and discharged when it
is below.

edisgo.flex_opt.storage_positioning module

edisgo.flex_opt.storage_positioning.one_storage_per_feeder(edisgo, stor-
age_timeseries, stor-
age_nominal_power=None,
**kwargs)

Allocates the given storage capacity to multiple smaller storages.

For each feeder with load or voltage issues it is checked if integrating a storage will reduce peaks in the feeder,
starting with the feeder with the highest theoretical grid expansion costs. A heuristic approach is used to estimate
storage sizing and siting while storage operation is carried over from the given storage operation.

Parameters

• edisgo (EDisGo) –

• storage_timeseries (pandas.DataFrame) – Total active and reactive power time se-
ries that will be allocated to the smaller storages in feeders with load or voltage issues.
Columns of the dataframe are ‘p’ containing active power time series in kW and ‘q’ con-
taining the reactive power time series in kvar. Index is a pandas.DatetimeIndex.

• storage_nominal_power (float or None) – Nominal power in kW that will be al-
located to the smaller storages in feeders with load or voltage issues. If no nominal power
is provided the maximum active power given in storage_timeseries is used. Default: None.

• debug (Boolean, optional) – If dedug is True a dataframe with storage size and path
to storage of all installed and possibly discarded storages is saved to a csv file and a plot
with all storage positions is created and saved, both to the current working directory with
filename storage_results_{MVgrid_id}. Default: False.

• check_costs_reduction (Boolean or str, optional) – This parameter specifies
when and whether it should be checked if a storage reduced grid expansion costs or not. It
can be used as a safety check but can be quite time consuming. Possible options are:

48 Chapter 9. API

https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

– ’each_feeder’ Costs reduction is checked for each feeder. If the storage did not reduce
grid expansion costs it is discarded.

– ’once’ Costs reduction is checked after the total storage capacity is allocated to the feed-
ers. If the storages did not reduce grid expansion costs they are all discarded.

– False Costs reduction is never checked.

Default: False.

Module contents

edisgo.grid package

Submodules

edisgo.grid.components module

class edisgo.grid.components.Component(**kwargs)
Bases: object

Generic component

Notes

In case of a MV-LV voltage station, grid refers to the LV grid.

id
Unique ID of component

Returns Unique ID of component

Return type int

geom
Location of component

Returns Location of the Component as Shapely Point or LineString

Return type Shapely Point object or Shapely LineString object

grid
Grid the component belongs to

Returns The MV or LV grid the component belongs to

Return type MVGrid or LVGrid

class edisgo.grid.components.Station(**kwargs)
Bases: edisgo.grid.components.Component

Station object (medium or low voltage)

Represents a station, contains transformers.

transformers
Transformers located in station

Type list of Transformer

add_transformer(transformer)

9.1. edisgo package 49

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
http://toblerity.org/shapely/manual.html#points
http://toblerity.org/shapely/manual.html#linestrings
https://docs.python.org/3/library/stdtypes.html#list

eDisGo Documentation, Release 0.0.10

class edisgo.grid.components.Transformer(**kwargs)
Bases: edisgo.grid.components.Component

Transformer object

_voltage_op
Operational voltage

Type float

_type
Specification of type, refers to ToDo: ADD CORRECT REF TO (STATIC) DATA

Type pandas.DataFrame

mv_grid

voltage_op

type

class edisgo.grid.components.Load(**kwargs)
Bases: edisgo.grid.components.Component

Load object

_timeseries
See timeseries getter for more information.

Type pandas.Series, optional

_consumption
See consumption getter for more information.

Type dict, optional

_timeseries_reactive
See timeseries_reactive getter for more information.

Type pandas.Series, optional

_power_factor
See power_factor getter for more information.

Type float, optional

_reactive_power_mode
See reactive_power_mode getter for more information.

Type str, optional

_q_sign
See q_sign getter for more information.

Type int, optional

timeseries
Load time series

It returns the actual time series used in power flow analysis. If _timeseries is not None, it is returned.
Otherwise, timeseries() looks for time series of the according sector in TimeSeries object.

Returns DataFrame containing active power in kW in column ‘p’ and reactive power in kVA in
column ‘q’.

Return type pandas.DataFrame

50 Chapter 9. API

https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

timeseries_reactive
Reactive power time series in kvar.

Parameters timeseries_reactive (pandas.Seriese) – Series containing reactive power in
kvar.

Returns Series containing reactive power time series in kvar. If it is not set it is tried to be
retrieved from load_reactive_power attribute of global TimeSeries object. If that is not pos-
sible None is returned.

Return type pandas.Series or None

pypsa_timeseries(attr)
Return time series in PyPSA format

Parameters attr (str) – Attribute name (PyPSA conventions). Choose from {p_set, q_set}

consumption
Annual consumption per sector in kWh

Sectors

• retail/industrial

• agricultural

• residential

The format of the dict is as follows:

{
'residential': 453.4

}

Type dict

peak_load
Get sectoral peak load

power_factor
Power factor of load

Parameters power_factor (float) – Ratio of real power to apparent power.

Returns Ratio of real power to apparent power. If power factor is not set it is retrieved from the
network config object depending on the grid level the load is in.

Return type float

reactive_power_mode
Power factor mode of Load.

This information is necessary to make the load behave in an inductive or capacitive manner. Essentially
this changes the sign of the reactive power.

The convention used here in a load is that: - when reactive_power_mode is ‘inductive’ then Q is positive -
when reactive_power_mode is ‘capacitive’ then Q is negative

Parameters reactive_power_mode (str or None) – Possible options are ‘inductive’, ‘ca-
pacitive’ and ‘not_applicable’. In the case of ‘not_applicable’ a reactive power time series
must be given.

Returns In the case that this attribute is not set, it is retrieved from the network config object
depending on the voltage level the load is in.

9.1. edisgo package 51

http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

Return type str

q_sign
Get the sign of reactive power based on _reactive_power_mode.

Returns In case of inductive reactive power returns +1 and in case of capacitive reactive power
returns -1. If reactive power time series is given, q_sign is set to None.

Return type int or None

class edisgo.grid.components.Generator(**kwargs)
Bases: edisgo.grid.components.Component

Generator object

_timeseries
See timeseries getter for more information.

Type pandas.Series, optional

_nominal_capacity
See nominal_capacity getter for more information.

Type dict, optional

_type
See type getter for more information.

Type pandas.Series, optional

_subtype
See subtype getter for more information.

Type str, optional

_v_level
See v_level getter for more information.

Type str, optional

_q_sign
See q_sign getter for more information.

Type int, optional

_power_factor
See power_factor getter for more information.

Type float, optional

_reactive_power_mode
See reactive_power_mode getter for more information.

Type str, optional

_q_sign
See q_sign getter for more information.

Type int, optional

Notes

The attributes _type and _subtype have to match the corresponding types in Timeseries to allow allo-
cation of time series to generators.

52 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

eDisGo Documentation, Release 0.0.10

See also:

edisgo.network.TimeSeries Details of global TimeSeries

timeseries
Feed-in time series of generator

It returns the actual dispatch time series used in power flow analysis. If _timeseries is not None,
it is returned. Otherwise, timeseries() looks for time series of the according type of technology in
TimeSeries. If the reactive power time series is provided through _timeseries_reactive, this is
added to _timeseries. When _timeseries_reactive is not set, the reactive power is also calcu-
lated in _timeseries using power_factor and reactive_power_mode. The power_factor
determines the magnitude of the reactive power based on the power factor and active power provided and
the reactive_power_mode determines if the reactive power is either consumed (inductive behaviour)
or provided (capacitive behaviour).

Returns DataFrame containing active power in kW in column ‘p’ and reactive power in kvar in
column ‘q’.

Return type pandas.DataFrame

timeseries_reactive
Reactive power time series in kvar.

Parameters timeseries_reactive (pandas.Seriese) – Series containing reactive power in
kvar.

Returns Series containing reactive power time series in kvar. If it is not set it is tried to be
retrieved from generation_reactive_power attribute of global TimeSeries object. If that is
not possible None is returned.

Return type pandas.Series or None

pypsa_timeseries(attr)
Return time series in PyPSA format

Convert from kW, kVA to MW, MVA

Parameters attr (str) – Attribute name (PyPSA conventions). Choose from {p_set, q_set}

type
Technology type (e.g. ‘solar’)

Type str

subtype
Technology subtype (e.g. ‘solar_roof_mounted’)

Type str

nominal_capacity
Nominal generation capacity in kW

Type float

v_level
Voltage level

Type int

power_factor
Power factor of generator

Parameters power_factor (float) – Ratio of real power to apparent power.

9.1. edisgo package 53

https://docs.python.org/3/library/constants.html#None
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.0.10

Returns Ratio of real power to apparent power. If power factor is not set it is retrieved from the
network config object depending on the grid level the generator is in.

Return type float

reactive_power_mode
Power factor mode of generator.

This information is necessary to make the generator behave in an inductive or capacitive manner. Essen-
tially this changes the sign of the reactive power.

The convention used here in a generator is that: - when reactive_power_mode is ‘capacitive’ then Q is
positive - when reactive_power_mode is ‘inductive’ then Q is negative

In the case that this attribute is not set, it is retrieved from the network config object depending on the
voltage level the generator is in.

Parameters reactive_power_mode (str or None) – Possible options are ‘inductive’, ‘ca-
pacitive’ and ‘not_applicable’. In the case of ‘not_applicable’ a reactive power time series
must be given.

Returns :obj:‘str‘ – In the case that this attribute is not set, it is retrieved from the network
config object depending on the voltage level the generator is in.

Return type Power factor mode

q_sign
Get the sign of reactive power based on _reactive_power_mode.

Returns In case of inductive reactive power returns -1 and in case of capacitive reactive power
returns +1. If reactive power time series is given, q_sign is set to None.

Return type int or None

class edisgo.grid.components.GeneratorFluctuating(**kwargs)
Bases: edisgo.grid.components.Generator

Generator object for fluctuating renewables.

_curtailment
See curtailment getter for more information.

Type pandas.Series

_weather_cell_id
See weather_cell_id getter for more information.

Type int

timeseries
Feed-in time series of generator

It returns the actual time series used in power flow analysis. If _timeseries is not None, it is returned.
Otherwise, timeseries() looks for generation and curtailment time series of the according type of
technology (and weather cell) in TimeSeries.

Returns DataFrame containing active power in kW in column ‘p’ and reactive power in kVA in
column ‘q’.

Return type pandas.DataFrame

timeseries_reactive
Reactive power time series in kvar.

:param pandas.Series: Series containing reactive power time series in kvar.

54 Chapter 9. API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#series

eDisGo Documentation, Release 0.0.10

Returns Series containing reactive power time series in kvar. If it is not set it is tried to be
retrieved from generation_reactive_power attribute of global TimeSeries object. If that is
not possible None is returned.

Return type pandas.DataFrame or None

curtailment
param curtailment_ts: See class definition for details. :type curtailment_ts: pandas.Series

Returns If self._curtailment is set it returns that. Otherwise, if curtailment in TimeSeries for
the corresponding technology type (and if given, weather cell ID) is set this is returned.

Return type pandas.Series

weather_cell_id
Get weather cell ID

Returns See class definition for details.

Return type str

class edisgo.grid.components.Storage(**kwargs)
Bases: edisgo.grid.components.Component

Storage object

Describes a single storage instance in the eDisGo grid. Includes technical parameters such as Storage.
efficiency_in or Storage.standing_loss as well as its time series of operation Storage.
timeseries().

timeseries
Time series of storage operation

Parameters ts (pandas.DataFrame) – DataFrame containing active power the storage is
charged (negative) and discharged (positive) with (on the grid side) in kW in column ‘p’
and reactive power in kvar in column ‘q’. When ‘q’ is positive, reactive power is supplied
(behaving as a capacitor) and when ‘q’ is negative reactive power is consumed (behaving as
an inductor).

Returns See parameter timeseries.

Return type pandas.DataFrame

pypsa_timeseries(attr)
Return time series in PyPSA format

Convert from kW, kVA to MW, MVA

Parameters attr (str) – Attribute name (PyPSA conventions). Choose from {p_set, q_set}

nominal_power
Nominal charging and discharging power of storage instance in kW.

Returns Storage nominal power

Return type float

max_hours
Maximum state of charge capacity in terms of hours at full discharging power nominal_power.

Returns Hours storage can be discharged for at nominal power

Return type float

nominal_capacity
Nominal storage capacity in kWh.

9.1. edisgo package 55

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.0.10

Returns Storage nominal capacity

Return type float

soc_initial
Initial state of charge in kWh.

Returns Initial state of charge

Return type float

efficiency_in
Storage charging efficiency in per unit.

Returns Charging efficiency in range of 0..1

Return type float

efficiency_out
Storage discharging efficiency in per unit.

Returns Discharging efficiency in range of 0..1

Return type float

standing_loss
Standing losses of storage in %/100 / h

Losses relative to SoC per hour. The unit is pu (%/100%). Hence, it ranges from 0..1.

Returns Standing losses in pu.

Return type float

operation
Storage operation definition

Returns

Return type str

power_factor
Power factor of storage

If power factor is not set it is retrieved from the network config object depending on the grid level the
storage is in.

Returns :obj:‘float‘ – Ratio of real power to apparent power.

Return type Power factor

reactive_power_mode
Power factor mode of storage.

If the power factor is set, then it is necessary to know whether it is leading or lagging. In other words this
information is necessary to make the storage behave in an inductive or capacitive manner. Essentially this
changes the sign of the reactive power Q.

The convention used here in a storage is that: - when reactive_power_mode is ‘capacitive’ then Q is
positive - when reactive_power_mode is ‘inductive’ then Q is negative

In the case that this attribute is not set, it is retrieved from the network config object depending on the
voltage level the storage is in.

Returns Either ‘inductive’ or ‘capacitive’

Return type obj: str : Power factor mode

56 Chapter 9. API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

q_sign
Get the sign reactive power based on the :attr: _reactive_power_mode

Returns

Return type obj: int : +1 or -1

class edisgo.grid.components.MVDisconnectingPoint(**kwargs)
Bases: edisgo.grid.components.Component

Disconnecting point object

Medium voltage disconnecting points = points where MV rings are split under normal operation conditions (=
switch disconnectors in DINGO).

_nodes
Nodes of switch disconnector line segment

Type tuple

open()
Toggle state to open switch disconnector

close()
Toggle state to closed switch disconnector

state
Get state of switch disconnector

Returns

State of MV ring disconnector: ‘open’ or ‘closed’.

Returns None if switch disconnector line segment is not set. This refers to an open ring, but
it’s unknown if the grid topology was built correctly.

Return type str or None

line
Get or set line segment that belongs to the switch disconnector

The setter allows only to set the respective line initially. Once the line segment representing the switch
disconnector is set, it cannot be changed.

Returns Line segment that is part of the switch disconnector model

Return type Line

class edisgo.grid.components.BranchTee(**kwargs)
Bases: edisgo.grid.components.Component

Branch tee object

A branch tee is used to branch off a line to connect another node (german: Abzweigmuffe)

class edisgo.grid.components.MVStation(**kwargs)
Bases: edisgo.grid.components.Station

MV Station object

class edisgo.grid.components.LVStation(**kwargs)
Bases: edisgo.grid.components.Station

LV Station object

mv_grid

9.1. edisgo package 57

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

eDisGo Documentation, Release 0.0.10

class edisgo.grid.components.Line(**kwargs)
Bases: edisgo.grid.components.Component

Line object

Parameters

• _type (pandas.Series) – Equipment specification including R and X for power flow analy-
sis Columns:

Column Description Unit Data type
name Name (e.g.

NAYY..) –
str

U_n Nominal voltage kV int
I_max_th Max. th. current A float
R Resistance Ohm/km float
L Inductance mH/km float
C Capacitance uF/km float
Source Data source - str

• _length (float) – Length of the line calculated in linear distance. Unit: m

• _quantity (float) – Quantity of parallel installed lines.

• _kind (String) – Specifies whether the line is an underground cable (‘cable’) or an
overhead line (‘line’).

geom
Provide Shapely LineString object geometry of Line

type

length

quantity

kind

edisgo.grid.connect module

edisgo.grid.connect.connect_mv_generators(network)
Connect MV generators to existing grids.

This function searches for unconnected generators in MV grids and connects them.

It connects

• generators of voltage level 4

– to HV-MV station

• generators of voltage level 5

– with a nom. capacity of <=30 kW to LV loads of type residential

– with a nom. capacity of >30 kW and <=100 kW to LV loads of type retail, industrial or agri-
cultural

– to the MV-LV station if no appropriate load is available (fallback)

Parameters network (Network) – The eDisGo container object

58 Chapter 9. API

http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://toblerity.org/shapely/manual.html#linestrings

eDisGo Documentation, Release 0.0.10

Notes

Adapted from Ding0.

edisgo.grid.connect.connect_lv_generators(network, allow_multiple_genos_per_load=True)
Connect LV generators to existing grids.

This function searches for unconnected generators in all LV grids and connects them.

It connects

• generators of voltage level 6

– to MV-LV station

• generators of voltage level 7

– with a nom. capacity of <=30 kW to LV loads of type residential

– with a nom. capacity of >30 kW and <=100 kW to LV loads of type retail, industrial or agri-
cultural

– to the MV-LV station if no appropriate load is available (fallback)

Parameters

• network (Network) – The eDisGo container object

• allow_multiple_genos_per_load (bool) – If True, more than one generator can
be connected to one load

Notes

For the allocation, loads are selected randomly (sector-wise) using a predefined seed to ensure reproducibility.

edisgo.grid.grids module

class edisgo.grid.grids.Grid(**kwargs)
Bases: object

Defines a basic grid in eDisGo

_id
Identifier

Type str

_network
Network which this grid is associated with

Type Network

_voltage_nom
Nominal voltage

Type int

_peak_load
Cumulative peak load of grid

Type float

9.1. edisgo package 59

https://github.com/openego/ding0/blob/21a52048f84ec341fe54e0204ac62228a9e8a32a/ding0/grid/mv_grid/mv_connect.py#L820
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.0.10

_peak_generation
Cumulative peak generation of grid

Type float

_grid_district
Contains information about grid district (supplied region) of grid, format: ToDo: DEFINE FORMAT

Type dict

_station
The station the grid is fed by

Type Station

_weather_cells
Contains a list of weather_cells within the grid

Type list

_generators
Contains a list of the generators

Type :obj:’edisgo.components.Generator’

_loads
Contains a list of the loads

Type :obj:’edisgo.components.Load’

connect_generators(generators)
Connects generators to grid

Parameters generators (pandas.DataFrame) – Generators to be connected

graph
Provide access to the graph

station
Provide access to station

voltage_nom
Provide access to nominal voltage

id

network

grid_district
Provide access to the grid_district

weather_cells
Weather cells contained in grid

Returns list of weather cell ids contained in grid

Return type list

peak_generation
Cumulative peak generation capacity of generators of this grid

Returns Ad-hoc calculated or cached peak generation capacity

Return type float

peak_generation_per_technology
Peak generation of each technology in the grid

60 Chapter 9. API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.0.10

Returns Peak generation index by technology

Return type pandas.Series

peak_generation_per_technology_and_weather_cell
Peak generation of each technology and the corresponding weather cell in the grid

Returns Peak generation index by technology

Return type pandas.Series

peak_load
Cumulative peak load capacity of generators of this grid

Returns Ad-hoc calculated or cached peak load capacity

Return type float

consumption
Consumption in kWh per sector for whole grid

Returns Indexed by demand sector

Return type pandas.Series

generators
Connected Generators within the grid

Returns List of Generator Objects

Return type list

loads
Connected Generators within the grid

Returns List of Generator Objects

Return type list

class edisgo.grid.grids.MVGrid(**kwargs)
Bases: edisgo.grid.grids.Grid

Defines a medium voltage grid in eDisGo

_mv_disconn_points
MVDisconnectingPoint

Medium voltage disconnecting points = points where MV rings are split under normal operation conditions
(= switch disconnectors in DINGO).

Type list of

_aggregates
This attribute is used for DINGO-imported data only. It contains data from DINGO’s Aggregated Load
Areas. Each list element represents one aggregated Load Area.

Type list of dict

lv_grids
list of LVGrid

Type LV grids associated to this MV grid

draw()
Draw MV grid’s graph using the geo data of nodes

9.1. edisgo package 61

http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

eDisGo Documentation, Release 0.0.10

Notes

This method uses the coordinates stored in the nodes’ geoms which are usually conformal, not equidistant.
Therefore, the plot might be distorted and does not (fully) reflect the real positions or distances between
nodes.

class edisgo.grid.grids.LVGrid(**kwargs)
Bases: edisgo.grid.grids.Grid

Defines a low voltage grid in eDisGo

class edisgo.grid.grids.Graph(incoming_graph_data=None, **attr)
Bases: networkx.classes.graph.Graph

Graph object

This graph is an object subclassed from networkX.Graph extended by extra functionality and specific methods.

nodes_from_line(line)
Get nodes adjacent to line

Here, line refers to the object behind the key ‘line’ of the attribute dict attached to each edge.

Parameters line (edisgo.grid.components.Line) – A eDisGo line object

Returns Nodes adjacent to this edge

Return type tuple

line_from_nodes(u, v)
Get line between two nodes u and v.

Parameters

• u (Component) – One adjacent node

• v (Component) – The other adjacent node

Returns Line segment connecting u and v.

Return type Line

nodes_by_attribute(attr_val, attr=’type’)
Select Graph’s nodes by attribute value

Get all nodes that share the same attribute. By default, the attr ‘type’ is used to specify the nodes type
(generator, load, etc.).

Examples

>>> import edisgo
>>> G = edisgo.grids.Graph()
>>> G.add_node(1, type='generator')
>>> G.add_node(2, type='load')
>>> G.add_node(3, type='generator')
>>> G.nodes_by_attribute('generator')
[1, 3]

Parameters

• attr_val (str) – Value of the attr nodes should be selected by

• attr (str, default: 'type') – Attribute key which is ‘type’ by default

62 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

Returns A list containing nodes elements that match the given attribute value

Return type list

lines_by_attribute(attr_val=None, attr=’type’)
Returns a generator for iterating over Graph’s lines by attribute value.

Get all lines that share the same attribute. By default, the attr ‘type’ is used to specify the lines’ type (line,
agg_line, etc.).

The edge of a graph is described by the two adjacent nodes and the line object itself. Whereas the line
object is used to hold all relevant power system parameters.

Examples

>>> import edisgo
>>> G = edisgo.grids.Graph()
>>> G.add_node(1, type='generator')
>>> G.add_node(2, type='load')
>>> G.add_edge(1, 2, type='line')
>>> lines = G.lines_by_attribute('line')
>>> list(lines)[0]
<class 'tuple'>: ((node1, node2), line)

Parameters

• attr_val (str) – Value of the attr lines should be selected by

• attr (str, default: 'type') – Attribute key which is ‘type’ by default

Returns A list containing line elements that match the given attribute value

Return type Generator of dict

Notes

There are generator functions for nodes (Graph.nodes()) and edges (Graph.edges()) in NetworkX but
unlike graph nodes, which can be represented by objects, branch objects can only be accessed by using an
edge attribute (‘line’ is used here)

To make access to attributes of the line objects simpler and more intuitive for the user, this generator yields
a dictionary for each edge that contains information about adjacent nodes and the line object.

Note, the construction of the dictionary highly depends on the structure of the in-going tuple (which is
defined by the needs of networkX). If this changes, the code will break.

Adapted from Dingo.

lines()
Returns a generator for iterating over Graph’s lines

Returns A list containing line elements

Return type Generator of dict

Notes

For a detailed description see lines_by_attribute()

9.1. edisgo package 63

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/openego/dingo/blob/ee237e37d4c228081e1e246d7e6d0d431c6dda9e/dingo/core/network/__init__.py
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.0.10

edisgo.grid.network module

class edisgo.grid.network.EDisGoReimport(results_path, **kwargs)
Bases: object

EDisGo class created from saved results.

plot_mv_grid_topology(technologies=False, **kwargs)
Plots plain MV grid topology and optionally nodes by technology type (e.g. station or generator).

Parameters technologies (Boolean) – If True plots stations, generators, etc. in the grid
in different colors. If False does not plot any nodes. Default: False.

:param For more information see edisgo.tools.plots.mv_grid_topology().:

plot_mv_voltages(**kwargs)
Plots voltages in MV grid on grid topology plot.

For more information see edisgo.tools.plots.mv_grid_topology().

plot_mv_line_loading(**kwargs)
Plots relative line loading (current from power flow analysis to allowed current) of MV lines.

For more information see edisgo.tools.plots.mv_grid_topology().

plot_mv_grid_expansion_costs(**kwargs)
Plots costs per MV line.

For more information see edisgo.tools.plots.mv_grid_topology().

plot_mv_storage_integration(**kwargs)
Plots storage position in MV grid of integrated storages.

For more information see edisgo.tools.plots.mv_grid_topology().

histogram_voltage(timestep=None, title=True, **kwargs)
Plots histogram of voltages.

For more information on the histogram plot and possible configurations see edisgo.tools.plots.
histogram().

Parameters

• timestep (pandas.Timestamp or list(pandas.Timestamp) or None, optional) – Specifies
time steps histogram is plotted for. If timestep is None all time steps voltages are calculated
for are used. Default: None.

• title (str or bool, optional) – Title for plot. If True title is auto generated. If False
plot has no title. If str, the provided title is used. Default: True.

histogram_relative_line_load(timestep=None, title=True, voltage_level=’mv_lv’,
**kwargs)

Plots histogram of relative line loads.

For more information on how the relative line load is calculated see edisgo.tools.tools.
get_line_loading_from_network(). For more information on the histogram plot and possible
configurations see edisgo.tools.plots.histogram().

Parameters

• timestep (pandas.Timestamp or list(pandas.Timestamp) or None, optional) – Specifies
time step(s) histogram is plotted for. If timestep is None all time steps currents are calcu-
lated for are used. Default: None.

64 Chapter 9. API

https://docs.python.org/3/library/functions.html#object
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp

eDisGo Documentation, Release 0.0.10

• title (str or bool, optional) – Title for plot. If True title is auto generated. If False
plot has no title. If str, the provided title is used. Default: True.

• voltage_level (str) – Specifies which voltage level to plot voltage histogram for.
Possible options are ‘mv’, ‘lv’ and ‘mv_lv’. ‘mv_lv’ is also the fallback option in case of
wrong input. Default: ‘mv_lv’

class edisgo.grid.network.EDisGo(**kwargs)
Bases: edisgo.grid.network.EDisGoReimport

Provides the top-level API for invocation of data import, analysis of hosting capacity, grid reinforcement and
flexibility measures.

Parameters

• worst_case_analysis (None or str, optional) – If not None time series for feed-in
and load will be generated according to the chosen worst case analysis Possible options are:

– ’worst-case’ feed-in for the two worst-case scenarios feed-in case and load case are gen-
erated

– ’worst-case-feedin’ feed-in for the worst-case scenario feed-in case is generated

– ’worst-case-load’ feed-in for the worst-case scenario load case is generated

Be aware that if you choose to conduct a worst-case analysis your input for the
following parameters will not be used: * timeseries_generation_fluctuating * time-
series_generation_dispatchable * timeseries_load

• mv_grid_id (str) – MV grid ID used in import of ding0 grid.

• ding0_grid (file: str or ding0.core.NetworkDing0) – If a str is provided it is
assumed it points to a pickle with Ding0 grid data. This file will be read. If an object of
the type ding0.core.NetworkDing0 data will be used directly from this object. This
will probably be removed when ding0 grids are in oedb.

• config_path (None or str or dict) – Path to the config directory. Options are:

– None If config_path is None configs are loaded from the edisgo default config directory
($HOME$/.edisgo). If the directory does not exist it is created. If config files don’t exist
the default config files are copied into the directory.

– str If config_path is a string configs will be loaded from the directory specified by
config_path. If the directory does not exist it is created. If config files don’t exist the
default config files are copied into the directory.

– dict A dictionary can be used to specify different paths to the different config files. The
dictionary must have the following keys:

* ’config_db_tables’

* ’config_grid’

* ’config_grid_expansion’

* ’config_timeseries’

Values of the dictionary are paths to the corresponding config file. In contrast to the other
two options the directories and config files must exist and are not automatically created.

Default: None.

• scenario_description (None or str) – Can be used to describe your scenario but
is not used for anything else. Default: None.

9.1. edisgo package 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

• timeseries_generation_fluctuating (str or pandas.DataFrame) – Parameter
used to obtain time series for active power feed-in of fluctuating renewables wind and solar.
Possible options are:

– ’oedb’ Time series for the year 2011 are obtained from the OpenEnergy DataBase.

– pandas.DataFrame DataFrame with time series, normalized with corresponding capacity.
Time series can either be aggregated by technology type or by type and weather cell ID.
In the first case columns of the DataFrame are ‘solar’ and ‘wind’; in the second case
columns need to be a pandas.MultiIndex with the first level containing the type and the
second level the weather cell id. Index needs to be a pandas.DatetimeIndex.

• timeseries_generation_dispatchable (pandas.DataFrame) – DataFrame with
time series for active power of each (aggregated) type of dispatchable generator normalized
with corresponding capacity. Index needs to be a pandas.DatetimeIndex. Columns represent
generator type:

– ’gas’

– ’coal’

– ’biomass’

– ’other’

– . . .

Use ‘other’ if you don’t want to explicitly provide every possible type.

• timeseries_generation_reactive_power (pandas.DataFrame, optional) –
DataFrame with time series of normalized reactive power (normalized by the rated nominal
active power) per technology and weather cell. Index needs to be a pandas.DatetimeIndex.
Columns represent generator type and can be a MultiIndex column containing the weather
cell ID in the second level. If the technology doesn’t contain weather cell information i.e.
if it is other than solar and wind generation, this second level can be left as a numpy Nan or
a None. Default: None. If no time series for the technology or technology and weather cell
ID is given, reactive power will be calculated from power factor and power factor mode in
the config sections reactive_power_factor and reactive_power_mode and a warning will be
raised. See Generator and GeneratorFluctuating for more information.

• timeseries_load (str or pandas.DataFrame) – Parameter used to obtain time series
of active power of (cumulative) loads. Possible options are:

– ’demandlib’ Time series for the year specified in timeindex are generated using the oemof
demandlib.

– pandas.DataFrame DataFrame with load time series of each (cumulative) type of load
normalized with corresponding annual energy demand. Index needs to be a pan-
das.DatetimeIndex. Columns represent load type: * ‘residential’ * ‘retail’ * ‘industrial’ *
‘agricultural’

• timeseries_load_reactive_power (pandas.DataFrame, optional) – DataFrame
with time series of normalized reactive power (normalized by annual energy demand) per
load sector. Index needs to be a pandas.DatetimeIndex. Columns represent load type:

– ’residential’

– ’retail’

– ’industrial’

66 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#multiindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex

eDisGo Documentation, Release 0.0.10

– ’agricultural’

Default: None. If no time series for the load sector is given, reactive power will be calculated
from power factor and power factor mode in the config sections reactive_power_factor and
reactive_power_mode and a warning will be raised. See Load for more information.

• generator_scenario (None or str) – If provided defines which scenario of future
generator park to use and invokes import of these generators. Possible options are ‘nep2035’
and ‘ego100’.

• timeindex (None or pandas.DatetimeIndex) – Can be used to select time ranges of the
feed-in and load time series that will be used in the power flow analysis. Also defines the
year load time series are obtained for when choosing the ‘demandlib’ option to generate
load time series.

network
The network is a container object holding all data.

Type Network

Examples

Assuming you have the Ding0 ding0_data.pkl in CWD

Create eDisGo Network object by loading Ding0 file

>>> from edisgo.grid.network import EDisGo
>>> edisgo = EDisGo(ding0_grid='ding0_data.pkl', mode='worst-case-feedin')

Analyze hosting capacity for MV and LV grid level

>>> edisgo.analyze()

Print LV station secondary side voltage levels returned by PFA

>>> lv_stations = edisgo.network.mv_grid.graph.nodes_by_attribute(
>>> 'lv_station')
>>> print(edisgo.network.results.v_res(lv_stations, 'lv'))

curtail(methodology, curtailment_timeseries, **kwargs)
Sets up curtailment time series.

Curtailment time series are written into TimeSeries. See CurtailmentControl for more informa-
tion on parameters and methodologies.

import_from_ding0(file, **kwargs)
Import grid data from DINGO file

For details see edisgo.data.import_data.import_from_ding0()

import_generators(generator_scenario=None)
Import generators

For details see edisgo.data.import_data.import_generators()

analyze(mode=None, timesteps=None)
Analyzes the grid by power flow analysis

Analyze the grid for violations of hosting capacity. Means, perform a power flow analysis and obtain
voltages at nodes (load, generator, stations/transformers and branch tees) and active/reactive power at
lines.

9.1. edisgo package 67

https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex

eDisGo Documentation, Release 0.0.10

The power flow analysis can currently only be performed for both grid levels MV and LV. See ToDos
section for more information.

A static non-linear power flow analysis is performed using PyPSA. The high-voltage to medium-voltage
transformer are not included in the analysis. The slack bus is defined at secondary side of these trans-
formers assuming an ideal tap changer. Hence, potential overloading of the transformers is not studied
here.

Parameters

• mode (str) – Allows to toggle between power flow analysis (PFA) on the whole grid
topology (MV + LV), only MV or only LV. Defaults to None which equals power flow
analysis for MV + LV which is the only implemented option at the moment. See ToDos
section for more information.

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies for
which time steps to conduct the power flow analysis. It defaults to None in which case
the time steps in timeseries.timeindex (see TimeSeries) are used.

Notes

The current implementation always translates the grid topology representation to the PyPSA format and
stores it to self.network.pypsa.

The option to export only the edisgo MV grid (mode = ‘mv’) to conduct a power flow analysis is imple-
mented in to_pypsa() but NotImplementedError is raised since the rest of edisgo does not handle this
option yet. The analyze function will throw an error since process_pfa_results() does not handle
aggregated loads and generators in the LV grids. Also, grid reinforcement, pypsa update of time series,
and probably other functionalities do not work when only the MV grid is analysed.

Further ToDos are: * explain how power plants are modeled, if possible use a link * explain where to find
and adjust power flow analysis defining parameters

See also:

to_pypsa() Translator to PyPSA data format

analyze_lopf(mode=None, timesteps=None, etrago_max_storage_size=None)
Analyzes the grid by power flow analysis

Analyze the grid for violations of hosting capacity. Means, perform a power flow analysis and obtain
voltages at nodes (load, generator, stations/transformers and branch tees) and active/reactive power at
lines.

The power flow analysis can currently only be performed for both grid levels MV and LV. See ToDos
section for more information.

A static non-linear power flow analysis is performed using PyPSA. The high-voltage to medium-voltage
transformer are not included in the analysis. The slack bus is defined at secondary side of these trans-
formers assuming an ideal tap changer. Hence, potential overloading of the transformers is not studied
here.

Parameters

• mode (str) – Allows to toggle between power flow analysis (PFA) on the whole grid
topology (MV + LV), only MV or only LV. Defaults to None which equals power flow
analysis for MV + LV which is the only implemented option at the moment. See ToDos
section for more information.

68 Chapter 9. API

https://www.pypsa.org/doc/power_flow.html#full-non-linear-power-flow
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://www.pypsa.org/doc/power_flow.html#full-non-linear-power-flow
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies for
which time steps to conduct the power flow analysis. It defaults to None in which case
the time steps in timeseries.timeindex (see TimeSeries) are used.

Notes

The current implementation always translates the grid topology representation to the PyPSA format and
stores it to self.network.pypsa.

The option to export only the edisgo MV grid (mode = ‘mv’) to conduct a power flow analysis is imple-
mented in to_pypsa() but NotImplementedError is raised since the rest of edisgo does not handle this
option yet. The analyze function will throw an error since process_pfa_results() does not handle
aggregated loads and generators in the LV grids. Also, grid reinforcement, pypsa update of time series,
and probably other functionalities do not work when only the MV grid is analysed.

Further ToDos are: * explain how power plants are modeled, if possible use a link * explain where to find
and adjust power flow analysis defining parameters

See also:

to_pypsa() Translator to PyPSA data format

reinforce(**kwargs)
Reinforces the grid and calculates grid expansion costs.

See edisgo.flex_opt.reinforce_grid() for more information.

integrate_storage(timeseries, position, **kwargs)
Integrates storage into grid.

See StorageControl for more information.

class edisgo.grid.network.Network(**kwargs)
Bases: object

Used as container for all data related to a single MVGrid.

Parameters

• scenario_description (str, optional) – Can be used to describe your scenario but
is not used for anything else. Default: None.

• config_path (None or str or dict, optional) – See Config for further information.
Default: None.

• metadata (dict) – Metadata of Network such as ?

• data_sources (dict of str) – Data Sources of grid, generators etc. Keys: ‘grid’,
‘generators’, ?

• mv_grid (MVGrid) – Medium voltage (MV) grid

• generator_scenario (str) – Defines which scenario of future generator park to use.

results
Object with results from power flow analyses

Type Results

id
MV grid ID

Returns MV grid ID

9.1. edisgo package 69

http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

Return type str

config
eDisGo configuration data.

Returns Config object with configuration data from config files.

Return type Config

metadata
Metadata of Network

Returns Metadata of Network

Return type dict

generator_scenario
Defines which scenario of future generator park to use.

Parameters generator_scenario_name (str) – Name of scenario of future generator
park

Returns Name of scenario of future generator park

Return type str

scenario_description
Used to describe your scenario but not used for anything else.

Parameters scenario_description (str) – Description of scenario

Returns Scenario name

Return type str

equipment_data
Technical data of electrical equipment such as lines and transformers

Returns Data of electrical equipment

Return type dict of pandas.DataFrame

mv_grid
Medium voltage (MV) grid

Parameters mv_grid (MVGrid) – Medium voltage (MV) grid

Returns Medium voltage (MV) grid

Return type MVGrid

timeseries
Object containing load and feed-in time series.

Parameters timeseries (TimeSeries) – Object containing load and feed-in time series.

Returns Object containing load and feed-in time series.

Return type TimeSeries

data_sources
Dictionary with data sources of grid, generators etc.

Returns Data Sources of grid, generators etc.

Return type dict of str

70 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

set_data_source(key, data_source)
Set data source for key (e.g. ‘grid’)

Parameters

• key (str) – Specifies data

• data_source (str) – Specifies data source

dingo_import_data
Temporary data from ding0 import needed for OEP generator update

pypsa
PyPSA grid representation

A grid topology representation based on pandas.DataFrame. The overall container object of this data
model, the pypsa.Network, is assigned to this attribute.

Parameters pypsa (pypsa.Network) – The PyPSA network container.

Returns PyPSA grid representation. The attribute edisgo_mode is added to specify if pypsa
representation of the edisgo network was created for the whole grid topology (MV + LV),
only MV or only LV. See parameter mode in analyze() for more information.

Return type pypsa.Network

class edisgo.grid.network.Config(**kwargs)
Bases: object

Container for all configurations.

Parameters config_path (None or str or dict) – Path to the config directory. Options are:

• None If config_path is None configs are loaded from the edisgo default config directory
($HOME$/.edisgo). If the directory does not exist it is created. If config files don’t exist the
default config files are copied into the directory.

• str If config_path is a string configs will be loaded from the directory specified by con-
fig_path. If the directory does not exist it is created. If config files don’t exist the default
config files are copied into the directory.

• dict A dictionary can be used to specify different paths to the different config files.
The dictionary must have the following keys: * ‘config_db_tables’ * ‘config_grid’ * ‘con-
fig_grid_expansion’ * ‘config_timeseries’

Values of the dictionary are paths to the corresponding config file. In contrast to the other
two options the directories and config files must exist and are not automatically created.

Default: None.

Notes

The Config object can be used like a dictionary. See example on how to use it.

Examples

Create Config object from default config files

>>> from edisgo.grid.network import Config
>>> config = Config()

9.1. edisgo package 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://pypsa.org/doc/components.html#network
https://pypsa.org/doc/components.html#network
https://www.pypsa.org/doc/components.html#network
https://pypsa.org/doc/components.html#network
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.0.10

Get reactive power factor for generators in the MV grid

>>> config['reactive_power_factor']['mv_gen']

class edisgo.grid.network.TimeSeriesControl(network, **kwargs)
Bases: object

Sets up TimeSeries Object.

Parameters

• network (Network) – The eDisGo data container

• mode (str, optional) – Mode must be set in case of worst-case analyses and can either be
‘worst-case’ (both feed-in and load case), ‘worst-case-feedin’ (only feed-in case) or ‘worst-
case-load’ (only load case). All other parameters except of config-data will be ignored.
Default: None.

• timeseries_generation_fluctuating (str or pandas.DataFrame, optional) –
Parameter used to obtain time series for active power feed-in of fluctuating renewables wind
and solar. Possible options are:

– ’oedb’ Time series for 2011 are obtained from the OpenEnergy DataBase. mv_grid_id
and scenario_description have to be provided when choosing this option.

– pandas.DataFrame DataFrame with time series, normalized with corresponding capacity.
Time series can either be aggregated by technology type or by type and weather cell ID.
In the first case columns of the DataFrame are ‘solar’ and ‘wind’; in the second case
columns need to be a pandas.MultiIndex with the first level containing the type and the
second level the weather cell ID.

Default: None.

• timeseries_generation_dispatchable (pandas.DataFrame, optional) –
DataFrame with time series for active power of each (aggregated) type of dispatchable
generator normalized with corresponding capacity. Columns represent generator type:

– ’gas’

– ’coal’

– ’biomass’

– ’other’

– . . .

Use ‘other’ if you don’t want to explicitly provide every possible type. Default: None.

• timeseries_generation_reactive_power (pandas.DataFrame, optional) –
DataFrame with time series of normalized reactive power (normalized by the rated nominal
active power) per technology and weather cell. Index needs to be a pandas.DatetimeIndex.
Columns represent generator type and can be a MultiIndex column containing the weather
cell ID in the second level. If the technology doesn’t contain weather cell information i.e. if
it is other than solar and wind generation, this second level can be left as an empty string ‘’.

Default: None.

• timeseries_load (str or pandas.DataFrame, optional) – Parameter used to obtain
time series of active power of (cumulative) loads. Possible options are:

– ’demandlib’ Time series are generated using the oemof demandlib.

72 Chapter 9. API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#multiindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

– pandas.DataFrame DataFrame with load time series of each (cumulative) type of load
normalized with corresponding annual energy demand. Columns represent load type:

* ’residential’

* ’retail’

* ’industrial’

* ’agricultural’

Default: None.

• timeseries_load_reactive_power (pandas.DataFrame, optional) – Parameter to
get the time series of the reactive power of loads. It should be a DataFrame with time series
of normalized reactive power (normalized by annual energy demand) per load sector. Index
needs to be a pandas.DatetimeIndex. Columns represent load type:

– ’residential’

– ’retail’

– ’industrial’

– ’agricultural’

Default: None.

• timeindex (pandas.DatetimeIndex) – Can be used to define a time range for which to
obtain load time series and feed-in time series of fluctuating renewables or to define time
ranges of the given time series that will be used in the analysis.

class edisgo.grid.network.CurtailmentControl(edisgo, methodology, curtail-
ment_timeseries, **kwargs)

Bases: object

Allocates given curtailment targets to solar and wind generators.

Parameters

• edisgo (edisgo.EDisGo) – The parent EDisGo object that this instance is a part of.

• methodology (str) – Defines the curtailment strategy. Possible options are:

– ’feedin-proportional’ The curtailment that has to be met in each time step is al-
located equally to all generators depending on their share of total feed-in in
that time step. For more information see edisgo.flex_opt.curtailment.
feedin_proportional().

– ’voltage-based’ The curtailment that has to be met in each time step is allocated based on
the voltages at the generator connection points and a defined voltage threshold. Gener-
ators at higher voltages are curtailed more. The default voltage threshold is 1.0 but can
be changed by providing the argument ‘voltage_threshold’. This method formulates the
allocation of curtailment as a linear optimization problem using Pyomo and requires a
linear programming solver like coin-or cbc (cbc) or gnu linear programming kit (glpk).
The solver can be specified through the parameter ‘solver’. For more information see
edisgo.flex_opt.curtailment.voltage_based().

• curtailment_timeseries (pandas.Series or pandas.DataFrame, optional) – Series
or DataFrame containing the curtailment time series in kW. Index needs to be a pan-
das.DatetimeIndex. Provide a Series if the curtailment time series applies to wind and solar
generators. Provide a DataFrame if the curtailment time series applies to a specific technol-
ogy and optionally weather cell. In the first case columns of the DataFrame are e.g. ‘solar’

9.1. edisgo package 73

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex

eDisGo Documentation, Release 0.0.10

and ‘wind’; in the second case columns need to be a pandas.MultiIndex with the first level
containing the type and the second level the weather cell ID. Default: None.

• solver (str) – The solver used to optimize the curtailment assigned to the generators
when ‘voltage-based’ curtailment methodology is chosen. Possible options are:

– ’cbc’

– ’glpk’

– any other available solver compatible with ‘pyomo’ such as ‘gurobi’ or ‘cplex’

Default: ‘cbc’.

• voltage_threshold (float) – Voltage below which no curtailment is assigned to
the respective generator if not necessary when ‘voltage-based’ curtailment methodology
is chosen. See edisgo.flex_opt.curtailment.voltage_based() for more
information. Default: 1.0.

class edisgo.grid.network.StorageControl(edisgo, timeseries, position, **kwargs)
Bases: object

Integrates storages into the grid.

Parameters

• edisgo (EDisGo) –

• timeseries (str or pandas.Series or dict) – Parameter used to obtain time series of
active power the storage(s) is/are charged (negative) or discharged (positive) with. Can
either be a given time series or an operation strategy. Possible options are:

– pandas.Series Time series the storage will be charged and discharged with can be set
directly by providing a pandas.Series with time series of active charge (negative) and dis-
charge (positive) power in kW. Index needs to be a pandas.DatetimeIndex. If no nominal
power for the storage is provided in parameters parameter, the maximum of the time se-
ries is used as nominal power. In case of more than one storage provide a dict where
each entry represents a storage. Keys of the dictionary have to match the keys of the pa-
rameters dictionary, values must contain the corresponding time series as pandas.Series.

– ’fifty-fifty’ Storage operation depends on actual power of generators. If cumulative gener-
ation exceeds 50% of the nominal power, the storage will charge. Otherwise, the storage
will discharge. If you choose this option you have to provide a nominal power for the
storage. See parameters for more information.

Default: None.

• position (None or str or Station or BranchTee or Generator or Load or
dict) – To position the storage a positioning strategy can be used or a node in the grid
can be directly specified. Possible options are:

– ’hvmv_substation_busbar’ Places a storage unit directly at the HV/MV station’s bus bar.

– Station or BranchTee or Generator or Load Specifies a node the storage should
be connected to. In the case this parameter is of type LVStation an additional parame-
ter, voltage_level, has to be provided to define which side of the LV station the storage is
connected to.

– ’distribute_storages_mv’ Places one storage in each MV feeder if it reduces grid expan-
sion costs. This method needs a given time series of active power. ToDo: Elaborate

In case of more than one storage provide a dict where each entry represents a storage.
Keys of the dictionary have to match the keys of the timeseries and parameters dictionaries,

74 Chapter 9. API

http://pandas.pydata.org/pandas-docs/stable/api.html#multiindex
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

eDisGo Documentation, Release 0.0.10

values must contain the corresponding positioning strategy or node to connect the storage
to.

• parameters (dict, optional) – Dictionary with the following optional storage parame-
ters:

{
'nominal_power': <float>, # in kW
'max_hours': <float>, # in h
'soc_initial': <float>, # in kWh
'efficiency_in': <float>, # in per unit 0..1
'efficiency_out': <float>, # in per unit 0..1
'standing_loss': <float> # in per unit 0..1

}

See Storage for more information on storage parameters. In case of more than one storage
provide a dict where each entry represents a storage. Keys of the dictionary have to match
the keys of the timeseries dictionary, values must contain the corresponding parameters
dictionary specified above. Note: As edisgo currently only provides a power flow analysis
storage parameters don’t have any effect on the calculations, except of the nominal power
of the storage. Default: {}.

• voltage_level (str or dict, optional) – This parameter only needs to be provided
if any entry in position is of type LVStation. In that case voltage_level defines which
side of the LV station the storage is connected to. Valid options are ‘lv’ and ‘mv’. In case
of more than one storage provide a dict specifying the voltage level for each storage that
is to be connected to an LV station. Keys of the dictionary have to match the keys of the
timeseries dictionary, values must contain the corresponding voltage level. Default: None.

• timeseries_reactive_power (pandas.Series or dict) – By default reactive power
is set through the config file config_timeseries in sections reactive_power_factor specify-
ing the power factor and reactive_power_mode specifying if inductive or capacitive reactive
power is provided. If you want to over-write this behavior you can provide a reactive power
time series in kvar here. Be aware that eDisGo uses the generator sign convention for stor-
ages (see Definitions and units section of the documentation for more information). Index
of the series needs to be a pandas.DatetimeIndex. In case of more than one storage pro-
vide a dict where each entry represents a storage. Keys of the dictionary have to match
the keys of the timeseries dictionary, values must contain the corresponding time series as
pandas.Series.

class edisgo.grid.network.TimeSeries(network, **kwargs)
Bases: object

Defines time series for all loads and generators in network (if set).

Contains time series for loads (sector-specific), generators (technology-specific), and curtailment (technology-
specific).

generation_fluctuating
DataFrame with active power feed-in time series for fluctuating renewables solar and wind, normalized
with corresponding capacity. Time series can either be aggregated by technology type or by type and
weather cell ID. In the first case columns of the DataFrame are ‘solar’ and ‘wind’; in the second case
columns need to be a pandas.MultiIndex with the first level containing the type and the second level the
weather cell ID. Default: None.

Type pandas.DataFrame, optional

generation_dispatchable

9.1. edisgo package 75

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/functions.html#object
http://pandas.pydata.org/pandas-docs/stable/api.html#multiindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

DataFrame with time series for active power of each (aggregated) type of dispatchable generator normal-
ized with corresponding capacity. Columns represent generator type:

• ‘gas’

• ‘coal’

• ‘biomass’

• ‘other’

• . . .

Use ‘other’ if you don’t want to explicitly provide every possible type. Default: None.

Type pandas.DataFrame, optional

generation_reactive_power
DataFrame with reactive power per technology and weather cell ID, normalized with the nominal active
power. Time series can either be aggregated by technology type or by type and weather cell ID. In the
first case columns of the DataFrame are ‘solar’ and ‘wind’; in the second case columns need to be a
pandas.MultiIndex with the first level containing the type and the second level the weather cell ID. If the
technology doesn’t contain weather cell information, i.e. if it is other than solar or wind generation, this
second level can be left as a numpy Nan or a None. Default: None.

Type

pandas pandasDataFrame<dataframe>, optional

load
DataFrame with active power of load time series of each (cumulative) type of load, normalized with cor-
responding annual energy demand. Columns represent load type:

• ‘residential’

• ‘retail’

• ‘industrial’

• ‘agricultural’

Default: None.

Type pandas.DataFrame, optional

load_reactive_power
DataFrame with time series of normalized reactive power (normalized by annual energy demand) per load
sector. Index needs to be a pandas.DatetimeIndex. Columns represent load type:

• ‘residential’

• ‘retail’

• ‘industrial’

• ‘agricultural’

Default: None.

Type pandas.DataFrame, optional

curtailment
In the case curtailment is applied to all fluctuating renewables this needs to be a DataFrame with active
power curtailment time series. Time series can either be aggregated by technology type or by type and
weather cell ID. In the first case columns of the DataFrame are ‘solar’ and ‘wind’; in the second case

76 Chapter 9. API

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#multiindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

columns need to be a pandas.MultiIndex with the first level containing the type and the second level the
weather cell ID. In the case curtailment is only applied to specific generators, this parameter needs to be a
list of all generators that are curtailed. Default: None.

Type pandas.DataFrame or List, optional

timeindex
Can be used to define a time range for which to obtain the provided time series and run power flow analysis.
Default: None.

Type pandas.DatetimeIndex, optional

See also:

timeseries getter in Generator, GeneratorFluctuating and Load.

generation_dispatchable
Get generation time series of dispatchable generators (only active power)

Returns See class definition for details.

Return type pandas.DataFrame

generation_fluctuating
Get generation time series of fluctuating renewables (only active power)

Returns See class definition for details.

Return type pandas.DataFrame

generation_reactive_power
Get reactive power time series for generators normalized by nominal active power.

Returns See class definition for details.

Return type pandas: pandas.DataFrame<dataframe>

load
Get load time series (only active power)

Returns See class definition for details.

Return type dict or pandas.DataFrame

load_reactive_power
Get reactive power time series for load normalized by annual consumption.

Returns See class definition for details.

Return type pandas: pandas.DataFrame<dataframe>

timeindex
param time_range: Time range of power flow analysis :type time_range: pandas.DatetimeIndex

Returns See class definition for details.

Return type pandas.DatetimeIndex

curtailment
Get curtailment time series of dispatchable generators (only active power)

Parameters curtailment (list or pandas.DataFrame) – See class definition for details.

Returns In the case curtailment is applied to all solar and wind generators curtailment time
series either aggregated by technology type or by type and weather cell ID are returnded. In
the first case columns of the DataFrame are ‘solar’ and ‘wind’; in the second case columns
need to be a pandas.MultiIndex with the first level containing the type and the second level

9.1. edisgo package 77

http://pandas.pydata.org/pandas-docs/stable/api.html#multiindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#multiindex

eDisGo Documentation, Release 0.0.10

the weather cell ID. In the case curtailment is only applied to specific generators, curtailment
time series of all curtailed generators, specified in by the column name are returned.

Return type pandas.DataFrame

timesteps_load_feedin_case
Contains residual load and information on feed-in and load case.

Residual load is calculated from total (load - generation) in the grid. Grid losses are not considered.

Feed-in and load case are identified based on the generation and load time series and defined as follows:

1. Load case: positive (load - generation) at HV/MV substation

2. Feed-in case: negative (load - generation) at HV/MV substation

See also assign_load_feedin_case().

Parameters timeseries_load_feedin_case (pandas.DataFrame) – Dataframe with in-
formation on whether time step is handled as load case (‘load_case’) or feed-in case
(‘feedin_case’) for each time step in timeindex. Index of the series is the timeindex.

Returns Series with information on whether time step is handled as load case (‘load_case’) or
feed-in case (‘feedin_case’) for each time step in timeindex. Index of the dataframe is
timeindex. Columns of the dataframe are ‘residual_load’ with (load - generation) in kW
at HV/MV substation and ‘case’ with ‘load_case’ for positive residual load and ‘feedin_case’
for negative residual load.

Return type pandas.Series

class edisgo.grid.network.Results(network)
Bases: object

Power flow analysis results management

Includes raw power flow analysis results, history of measures to increase the grid’s hosting capacity and infor-
mation about changes of equipment.

network
The network is a container object holding all data.

Type Network

measures
List with the history of measures to increase grid’s hosting capacity.

Parameters measure (str) – Measure to increase grid’s hosting capacity. Possible options
are ‘grid_expansion’, ‘storage_integration’, ‘curtailment’.

Returns measures – A stack that details the history of measures to increase grid’s hosting ca-
pacity. The last item refers to the latest measure. The key original refers to the state of the
grid topology as it was initially imported.

Return type list

pfa_p
Active power results from power flow analysis in kW.

Holds power flow analysis results for active power for the last iteration step. Index of the DataFrame is
a DatetimeIndex indicating the time period the power flow analysis was conducted for; columns of the
DataFrame are the edges as well as stations of the grid topology.

Parameters pypsa (pandas.DataFrame) – Results time series of active power P in kW from the
PyPSA network

78 Chapter 9. API

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://www.pypsa.org/doc/components.html#network

eDisGo Documentation, Release 0.0.10

Provide this if you want to set values. For retrieval of data do not pass an argument

Returns Active power results from power flow analysis

Return type pandas.DataFrame

pfa_q
Reactive power results from power flow analysis in kvar.

Holds power flow analysis results for reactive power for the last iteration step. Index of the DataFrame
is a DatetimeIndex indicating the time period the power flow analysis was conducted for; columns of the
DataFrame are the edges as well as stations of the grid topology.

Parameters pypsa (pandas.DataFrame) – Results time series of reactive power Q in kvar from
the PyPSA network

Provide this if you want to set values. For retrieval of data do not pass an argument

Returns Reactive power results from power flow analysis

Return type pandas.DataFrame

pfa_v_mag_pu
Voltage deviation at node in p.u.

Holds power flow analysis results for relative voltage deviation for the last iteration step. Index of the
DataFrame is a DatetimeIndex indicating the time period the power flow analysis was conducted for;
columns of the DataFrame are the nodes as well as stations of the grid topology.

Parameters pypsa (pandas.DataFrame) – Results time series of voltage deviation in p.u. from
the PyPSA network

Provide this if you want to set values. For retrieval of data do not pass an argument

Returns Voltage level nodes of grid

Return type pandas.DataFrame

i_res
Current results from power flow analysis in A.

Holds power flow analysis results for current for the last iteration step. Index of the DataFrame is a
DatetimeIndex indicating the time period the power flow analysis was conducted for; columns of the
DataFrame are the edges as well as stations of the grid topology.

Parameters pypsa (pandas.DataFrame) – Results time series of current in A from the PyPSA
network

Provide this if you want to set values. For retrieval of data do not pass an argument

Returns Current results from power flow analysis

Return type pandas.DataFrame

equipment_changes
Tracks changes in the equipment (e.g. replaced or added cable, etc.)

The DataFrame is indexed by the component(Line, Station, etc.) and has the following columns:

equipment : detailing what was changed (line, station, storage, curtailment). For ease of referencing we
take the component itself. For lines we take the line-dict, for stations the transformers, for storages the
storage-object itself and for curtailment either a dict providing the details of curtailment or a curtailment
object if this makes more sense (has to be defined).

change [str] Specifies if something was added or removed.

9.1. edisgo package 79

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://www.pypsa.org/doc/components.html#network
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://www.pypsa.org/doc/components.html#network
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://www.pypsa.org/doc/components.html#network
https://www.pypsa.org/doc/components.html#network
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

iteration_step [int] Used for the update of the pypsa network to only consider changes since the last
power flow analysis.

quantity [int] Number of components added or removed. Only relevant for calculation of grid expansion
costs to keep track of how many new standard lines were added.

Parameters changes (pandas.DataFrame) – Provide this if you want to set values. For re-
trieval of data do not pass an argument.

Returns Equipment changes

Return type pandas.DataFrame

grid_expansion_costs
Holds grid expansion costs in kEUR due to grid expansion measures tracked in self.equipment_changes
and calculated in edisgo.flex_opt.costs.grid_expansion_costs()

Parameters total_costs (pandas.DataFrame) – DataFrame containing type and costs plus
in the case of lines the line length and number of parallel lines of each reinforced transformer
and line. Provide this if you want to set grid_expansion_costs. For retrieval of costs do not
pass an argument.

Index of the DataFrame is the respective object that can either be a Line or a
Transformer. Columns are the following:

type [str] Transformer size or cable name

total_costs [float] Costs of equipment in kEUR. For lines the line length and number of
parallel lines is already included in the total costs.

quantity [int] For transformers quantity is always one, for lines it specifies the number of
parallel lines.

line_length [float] Length of line or in case of parallel lines all lines in km.

voltage_level [str] Specifies voltage level the equipment is in (‘lv’, ‘mv’ or ‘mv/lv’).

mv_feeder [Line] First line segment of half-ring used to identify in which feeder the grid
expansion was conducted in.

Returns Costs of each reinforced equipment in kEUR.

Return type pandas.DataFrame

Notes

Total grid expansion costs can be obtained through costs.total_costs.sum().

grid_losses
Holds active and reactive grid losses in kW and kvar, respectively.

Parameters pypsa_grid_losses (pandas.DataFrame) – Dataframe holding active and re-
active grid losses in columns ‘p’ and ‘q’ and in kW and kvar, respectively. Index is a pan-
das.DatetimeIndex.

Returns Dataframe holding active and reactive grid losses in columns ‘p’ and ‘q’ and in kW and
kvar, respectively. Index is a pandas.DatetimeIndex.

Return type pandas.DataFrame

80 Chapter 9. API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

Notes

Grid losses are calculated as follows:

𝑃𝑙𝑜𝑠𝑠 =
∑︁

𝑓𝑒𝑒𝑑− 𝑖𝑛−
∑︁

𝑙𝑜𝑎𝑑 + 𝑃𝑠𝑙𝑎𝑐𝑘𝑄𝑙𝑜𝑠𝑠 =
∑︁

𝑓𝑒𝑒𝑑− 𝑖𝑛−
∑︁

𝑙𝑜𝑎𝑑 + 𝑄𝑠𝑙𝑎𝑐𝑘

As the slack is placed at the secondary side of the HV/MV station losses do not include losses of the
HV/MV transformers.

hv_mv_exchanges
Holds active and reactive power exchanged with the HV grid.

The exchanges are essentially the slack results. As the slack is placed at the secondary side of the HV/MV
station, this gives the energy transferred to and taken from the HV grid at the secondary side of the HV/MV
station.

Parameters hv_mv_exchanges (pandas.DataFrame) – Dataframe holding active and reac-
tive power exchanged with the HV grid in columns ‘p’ and ‘q’ and in kW and kvar, respec-
tively. Index is a pandas.DatetimeIndex.

Returns Dataframe holding active and reactive power exchanged with the HV grid in columns
‘p’ and ‘q’ and in kW and kvar, respectively. Index is a pandas.DatetimeIndex.

Return type pandas:‘pandas.DataFrame<dataframe>

curtailment
Holds curtailment assigned to each generator per curtailment target.

Returns Keys of the dictionary are generator types (and weather cell ID) curtailment tar-
gets were given for. E.g. if curtailment is provided as a pandas.DataFrame with :pan-
das.‘pandas.MultiIndex‘ columns with levels ‘type’ and ‘weather cell ID’ the dictionary
key is a tuple of (‘type’,’weather_cell_id’). Values of the dictionary are dataframes with
the curtailed power in kW per generator and time step. Index of the dataframe is a pan-
das.DatetimeIndex. Columns are the generators of type edisgo.grid.components.
GeneratorFluctuating.

Return type dict with pandas.DataFrame

storages
Gathers relevant storage results.

Returns

Dataframe containing all storages installed in the MV grid and LV grids. Index of the
dataframe are the storage representatives, columns are the following:

nominal_power [float] Nominal power of the storage in kW.

voltage_level [str] Voltage level the storage is connected to. Can either be ‘mv’ or ‘lv’.

Return type pandas.DataFrame

storages_timeseries()
Returns a dataframe with storage time series.

Returns Dataframe containing time series of all storages installed in the MV grid and LV grids.
Index of the dataframe is a pandas.DatetimeIndex. Columns are the storage representatives.

Return type pandas.DataFrame

storages_costs_reduction
Contains costs reduction due to storage integration.

9.1. edisgo package 81

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

Parameters costs_df (pandas.DataFrame) – Dataframe containing grid expansion costs in
kEUR before and after storage integration in columns ‘grid_expansion_costs_initial’ and
‘grid_expansion_costs_with_storages’, respectively. Index of the dataframe is the MV grid
id.

Returns Dataframe containing grid expansion costs in kEUR before and after storage integra-
tion in columns ‘grid_expansion_costs_initial’ and ‘grid_expansion_costs_with_storages’,
respectively. Index of the dataframe is the MV grid id.

Return type pandas.DataFrame

unresolved_issues
Holds lines and nodes where over-loading or over-voltage issues could not be solved in grid reinforcement.

In case over-loading or over-voltage issues could not be solved after maximum number of iterations, grid
reinforcement is not aborted but grid expansion costs are still calculated and unresolved issues listed here.

Parameters issues (dict) – Dictionary of critical lines/stations with relative over-loading
and critical nodes with voltage deviation in p.u.. Format:

{crit_line_1: rel_overloading_1, ...,
crit_line_n: rel_overloading_n,
crit_node_1: v_mag_pu_node_1, ...,
crit_node_n: v_mag_pu_node_n}

Provide this if you want to set unresolved_issues. For retrieval of unresolved issues do not
pass an argument.

Returns Dictionary of critical lines/stations with relative over-loading and critical nodes with
voltage deviation in p.u.

Return type Dictionary

s_res(components=None)
Get resulting apparent power in kVA at line(s) and transformer(s).

The apparent power at a line (or transformer) is determined from the maximum values of active power P
and reactive power Q.

𝑆 = 𝑚𝑎𝑥(
√︁
𝑝20 + 𝑞20 ,

√︁
𝑝21 + 𝑞21)

Parameters components (list) – List with all components (of type Line or
Transformer) to get apparent power for. If not provided defaults to return apparent power
of all lines and transformers in the grid.

Returns Apparent power in kVA for lines and/or transformers.

Return type pandas.DataFrame

v_res(nodes=None, level=None)
Get voltage results (in p.u.) from power flow analysis.

Parameters

• nodes (Load, Generator, etc. or list) – Grid topology component or list of grid
topology components. If not provided defaults to column names available in grid level
level.

• level (str) – Either ‘mv’ or ‘lv’ or None (default). Depending on which grid level
results you are interested in. It is required to provide this argument in order to distinguish
voltage levels at primary and secondary side of the transformer/LV station. If not provided
(respectively None) defaults to [‘mv’, ‘lv’].

82 Chapter 9. API

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

Returns Resulting voltage levels obtained from power flow analysis

Return type pandas.DataFrame

Notes

Limitation: When power flow analysis is performed for MV only (with aggregated LV loads and genera-
tors) this methods only returns voltage at secondary side busbar and not at load/generator.

save(directory, parameters=’all’)
Saves results to disk.

Depending on which results are selected and if they exist, the following directories and files are created:

• powerflow_results directory

– voltages_pu.csv

See pfa_v_mag_pu for more information.

– currents.csv

See i_res() for more information.

– active_powers.csv

See pfa_p for more information.

– reactive_powers.csv

See pfa_q for more information.

– apparent_powers.csv

See s_res() for more information.

– grid_losses.csv

See grid_losses for more information.

– hv_mv_exchanges.csv

See hv_mv_exchanges for more information.

• pypsa_network directory

See pypsa.Network.export_to_csv_folder()

• grid_expansion_results directory

– grid_expansion_costs.csv

See grid_expansion_costs for more information.

– equipment_changes.csv

See equipment_changes for more information.

– unresolved_issues.csv

See unresolved_issues for more information.

• curtailment_results directory

Files depend on curtailment specifications. There will be one file for each curtailment specification,
that is for every key in curtailment dictionary.

• storage_integration_results directory

9.1. edisgo package 83

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

– storages.csv

See storages() for more information.

Parameters

• directory (str) – Directory to save the results in.

• parameters (str or list of str) – Specifies which results will be saved. By default
all results are saved. To only save certain results set parameters to one of the following
options or choose several options by providing a list:

– ’pypsa_network’

– ’powerflow_results’

– ’grid_expansion_results’

– ’curtailment_results’

– ’storage_integration_results’

class edisgo.grid.network.NetworkReimport(results_path, **kwargs)
Bases: object

Network class created from saved results.

class edisgo.grid.network.ResultsReimport(results_path, parameters=’all’)
Bases: object

Results class created from saved results.

v_res(nodes=None, level=None)
Get resulting voltage level at node.

Parameters

• nodes (list) – List of string representatives of grid topology components, e.g.
Generator. If not provided defaults to all nodes available in grid level level.

• level (str) – Either ‘mv’ or ‘lv’ or None (default). Depending on which grid level
results you are interested in. It is required to provide this argument in order to distinguish
voltage levels at primary and secondary side of the transformer/LV station. If not provided
(respectively None) defaults to [‘mv’, ‘lv’].

Returns Resulting voltage levels obtained from power flow analysis

Return type pandas.DataFrame

s_res(components=None)
Get apparent power in kVA at line(s) and transformer(s).

Parameters components (list) – List of string representatives of Line or Transformer.
If not provided defaults to return apparent power of all lines and transformers in the grid.

Returns Apparent power in kVA for lines and/or transformers.

Return type pandas.DataFrame

storages_timeseries()
Returns a dataframe with storage time series.

Returns Dataframe containing time series of all storages installed in the MV grid and LV grids.
Index of the dataframe is a pandas.DatetimeIndex. Columns are the storage representatives.

Return type pandas.DataFrame

84 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

edisgo.grid.tools module

edisgo.grid.tools.position_switch_disconnectors(mv_grid, mode=’load’, sta-
tus=’open’)

Determine position of switch disconnector in MV grid rings

Determination of the switch disconnector location is motivated by placing it to minimized load flows in both
parts of the ring (half-rings). The switch disconnecter will be installed to a LV station, unless none exists in a
ring. In this case, a node of arbitrary type is chosen for the location of the switch disconnecter.

Parameters

• mv_grid (MVGrid) – MV grid instance

• mode (str) – Define modus switch disconnector positioning: can be performed based of
‘load’, ‘generation’ or both ‘loadgen’. Defaults to ‘load’

• status (str) – Either ‘open’ or ‘closed’. Define which status is should be set initially.
Defaults to ‘open’ (which refers to conditions of normal grid operation).

Returns A tuple of size 2 specifying their pair of nodes between which the switch disconnector is
located. The first node specifies the node that actually includes the switch disconnector.

Return type tuple

Notes

This function uses nx.algorithms.find_cycle() to identify nodes that are part of the MV grid ring(s). Make sure
grid topology data that is provided has closed rings. Otherwise, no location for a switch disconnector can be
identified.

edisgo.grid.tools.implement_switch_disconnector(mv_grid, node1, node2)
Install switch disconnector in grid topology

The graph that represents the grid’s topology is altered in such way that it explicitly includes a switch discon-
nector. The switch disconnector is always located at node1. Technically, it does not make any difference. This
is just an convention ensuring consistency of multiple runs.

The ring is still closed after manipulations of this function.

Parameters

• mv_grid (MVGrid) – MV grid instance

• node1 – A rings node

• node2 – Another rings node

edisgo.grid.tools.select_cable(network, level, apparent_power)
Selects an appropriate cable type and quantity using given apparent power.

Considers load factor.

Parameters

• network (Network) – The eDisGo container object

• level (str) – Grid level (‘mv’ or ‘lv’)

• apparent_power (float) – Apparent power the cable must carry in kVA

Returns

• pandas.Series – Cable type

9.1. edisgo package 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/api.html#series

eDisGo Documentation, Release 0.0.10

• ìnt – Cable count

Notes

Cable is selected to be able to carry the given apparent_power, no load factor is considered.

edisgo.grid.tools.get_gen_info(network, level=’mvlv’, fluctuating=False)
Gets all the installed generators with some additional information.

Parameters

• network (Network) – Network object holding the grid data.

• level (str) – Defines which generators are returned. Possible options are:

– ’mv’ Only generators connected to the MV grid are returned.

– ’lv’ Only generators connected to the LV grids are returned.

– ’mvlv’ All generators connected to the MV grid and LV grids are returned.

Default: ‘mvlv’.

• fluctuating (bool) – If True only returns fluctuating generators. Default: False.

Returns

Dataframe with all generators connected to the specified voltage level. Index of the dataframe
are the generator objects of type Generator. Columns of the dataframe are:

• ’gen_repr’ The representative of the generator as str.

• ’type’ The generator type, e.g. ‘solar’ or ‘wind’ as str.

• ’voltage_level’ The voltage level the generator is connected to as str. Can either be ‘mv’
or ‘lv’.

• ’nominal_capacity’ The nominal capacity of the generator as as float.

• ’weather_cell_id’ The id of the weather cell the generator is located in as int (only applies
to fluctuating generators).

Return type pandas.DataFrame

edisgo.grid.tools.assign_mv_feeder_to_nodes(mv_grid)
Assigns an MV feeder to every generator, LV station, load, and branch tee

Parameters mv_grid (MVGrid) –

edisgo.grid.tools.get_mv_feeder_from_line(line)
Determines MV feeder the given line is in.

MV feeders are identified by the first line segment of the half-ring.

Parameters line (Line) – Line to find the MV feeder for.

Returns MV feeder identifier (representative of the first line segment of the half-ring)

Return type Line

edisgo.grid.tools.disconnect_storage(network, storage)
Removes storage from network graph and pypsa representation.

Parameters

• network (Network) –

86 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

• storage (Storage) – Storage instance to be removed.

Module contents

edisgo.tools package

Submodules

edisgo.tools.config module

This file is part of eDisGo, a python package for distribution grid analysis and optimization.

It is developed in the project open_eGo: https://openegoproject.wordpress.com

eDisGo lives on github: https://github.com/openego/edisgo/ The documentation is available on RTD: http://edisgo.
readthedocs.io

Based on code by oemof developing group

This module provides a highlevel layer for reading and writing config files.

edisgo.tools.config.load_config(filename, config_dir=None, copy_default_config=True)
Loads the specified config file.

Parameters

• filename (str) – Config file name, e.g. ‘config_grid.cfg’.

• config_dir (str, optional) – Path to config file. If None uses default edisgo config
directory specified in config file ‘config_system.cfg’ in section ‘user_dirs’ by subsections
‘root_dir’ and ‘config_dir’. Default: None.

• copy_default_config (Boolean) – If True copies a default config file into con-
fig_dir if the specified config file does not exist. Default: True.

edisgo.tools.config.get(section, key)
Returns the value of a given key of a given section of the main config file.

Parameters

• section (str) –

• key (str) –

Returns The value which will be casted to float, int or boolean. If no cast is successful, the raw
string is returned.

Return type float or int or Boolean or str

edisgo.tools.config.get_default_config_path()
Returns the basic edisgo config path. If it does not yet exist it creates it and copies all default config files into it.

Returns Path to default edisgo config directory specified in config file ‘config_system.cfg’ in section
‘user_dirs’ by subsections ‘root_dir’ and ‘config_dir’.

Return type str

edisgo.tools.config.make_directory(directory)
Makes directory if it does not exist.

Parameters directory (str) – Directory path

9.1. edisgo package 87

https://openegoproject.wordpress.com
https://github.com/openego/edisgo/
http://edisgo.readthedocs.io
http://edisgo.readthedocs.io
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

edisgo.tools.edisgo_run module

edisgo.tools.geo module

edisgo.tools.geo.proj2equidistant(network)
Defines conformal (e.g. WGS84) to ETRS (equidistant) projection Source CRS is loaded from Network’s config.

Parameters network (Network) – The eDisGo container object

Returns

Return type functools.partial()

edisgo.tools.geo.proj2conformal(network)
Defines ETRS (equidistant) to conformal (e.g. WGS84) projection. Target CRS is loaded from Network’s
config.

Parameters network (Network) – The eDisGo container object

Returns

Return type functools.partial()

edisgo.tools.geo.calc_geo_lines_in_buffer(network, node, grid, radius, radius_inc)
Determines lines in nodes’ associated graph that are at least partly within buffer of radius from node. If there
are no lines, the buffer is successively extended by radius_inc until lines are found.

Parameters

• network (Network) – The eDisGo container object

• node (Component) – Origin node the buffer is created around (e.g. Generator). Node
must be a member of grid’s graph (grid.graph)

• grid (Grid) – Grid whose lines are searched

• radius (float) – Buffer radius in m

• radius_inc (float) – Buffer radius increment in m

Returns Sorted (by repr()) list of lines

Return type list of Line

Notes

Adapted from Ding0.

edisgo.tools.geo.calc_geo_dist_vincenty(network, node_source, node_target)
Calculates the geodesic distance between node_source and node_target incorporating the detour factor in config.

Parameters

• network (Network) – The eDisGo container object

• node_source (Component) – Node to connect (e.g. Generator)

• node_target (Component) – Target node (e.g. BranchTee)

Returns Distance in m

Return type float

88 Chapter 9. API

https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://github.com/openego/ding0/blob/21a52048f84ec341fe54e0204ac62228a9e8a32a/ding0/tools/geo.py#L53
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.0.10

edisgo.tools.plots module

edisgo.tools.plots.histogram(data, **kwargs)
Function to create histogram, e.g. for voltages or currents.

Parameters

• data (pandas.DataFrame) – Data to be plotted, e.g. voltage or current (v_res or i_res
from edisgo.grid.network.Results). Index of the dataframe must be a pan-
das.DatetimeIndex.

• timeindex (pandas.Timestamp or list(pandas.Timestamp) or None, optional) – Specifies
time steps histogram is plotted for. If timeindex is None all time steps provided in data are
used. Default: None.

• directory (str or None, optional) – Path to directory the plot is saved to. Is created if
it does not exist. Default: None.

• filename (str or None, optional) – Filename the plot is saved as. File format is specified
by ending. If filename is None, the plot is shown. Default: None.

• color (str or None, optional) – Color used in plot. If None it defaults to blue. Default:
None.

• alpha (float, optional) – Transparency of the plot. Must be a number between 0 and 1,
where 0 is see through and 1 is opaque. Default: 1.

• title (str or None, optional) – Plot title. Default: None.

• x_label (str, optional) – Label for x-axis. Default: “”.

• y_label (str, optional) – Label for y-axis. Default: “”.

• normed (bool, optional) – Defines if histogram is normed. Default: False.

• x_limits (tuple or None, optional) – Tuple with x-axis limits. First entry is the mini-
mum and second entry the maximum value. Default: None.

• y_limits (tuple or None, optional) – Tuple with y-axis limits. First entry is the mini-
mum and second entry the maximum value. Default: None.

• fig_size (str or tuple, optional) –

Size of the figure in inches or a string with the following options:

– ’a4portrait’

– ’a4landscape’

– ’a5portrait’

– ’a5landscape’

Default: ‘a5landscape’.

• binwidth (float) – Width of bins. Default: None.

edisgo.tools.plots.add_basemap(ax, zoom=12)
Adds map to a plot.

edisgo.tools.plots.get_grid_district_polygon(config, subst_id=None, projection=4326)
Get MV grid district polygon from oedb for plotting.

9.1. edisgo package 89

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.0.10

edisgo.tools.plots.mv_grid_topology(pypsa_network, configs, timestep=None,
line_color=None, node_color=None, line_load=None,
grid_expansion_costs=None, filename=None,
arrows=False, grid_district_geom=True,
background_map=True, voltage=None, lim-
its_cb_lines=None, limits_cb_nodes=None, xlim=None,
ylim=None, lines_cmap=’inferno_r’, title=”, scal-
ing_factor_line_width=None)

Plot line loading as color on lines.

Displays line loading relative to nominal capacity.

Parameters

• pypsa_network (pypsa.Network) –

• configs (dict) – Dictionary with used configurations from config files. See Config
for more information.

• timestep (pandas.Timestamp) – Time step to plot analysis results for. If timestep is None
maximum line load and if given, maximum voltage deviation, is used. In that case arrows
cannot be drawn. Default: None.

• line_color (str or None) – Defines whereby to choose line colors (and implicitly size).
Possible options are:

– ’loading’ Line color is set according to loading of the line. Loading of MV lines must be
provided by parameter line_load.

– ’expansion_costs’ Line color is set according to investment costs of the line. This option
also effects node colors and sizes by plotting investment in stations and setting node_color
to ‘storage_integration’ in order to plot storage size of integrated storages. Grid expansion
costs must be provided by parameter grid_expansion_costs.

– None (default) Lines are plotted in black. Is also the fallback option in case of wrong
input.

• node_color (str or None) – Defines whereby to choose node colors (and implicitly
size). Possible options are:

– ’technology’ Node color as well as size is set according to type of node (generator, MV
station, etc.).

– ’voltage’ Node color is set according to voltage deviation from 1 p.u.. Voltages of nodes
in MV grid must be provided by parameter voltage.

– ’storage_integration’ Only storages are plotted. Size of node corresponds to size of stor-
age.

– None (default) Nodes are not plotted. Is also the fallback option in case of wrong input.

• line_load (pandas.DataFrame or None) – Dataframe with current results from power
flow analysis in A. Index of the dataframe is a pandas.DatetimeIndex, columns are the line
representatives. Only needs to be provided when parameter line_color is set to ‘loading’.
Default: None.

• grid_expansion_costs (pandas.DataFrame or None) – Dataframe with grid expan-
sion costs in kEUR. See grid_expansion_costs in Results for more information. Only
needs to be provided when parameter line_color is set to ‘expansion_costs’. Default: None.

• filename (str) – Filename to save plot under. If not provided, figure is shown directly.
Default: None.

90 Chapter 9. API

https://pypsa.org/doc/components.html#network
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#str

eDisGo Documentation, Release 0.0.10

• arrows (Boolean) – If True draws arrows on lines in the direction of the power flow.
Does only work when line_color option ‘loading’ is used and a time step is given. Default:
False.

• grid_district_geom (Boolean) – If True grid district polygon is plotted in the back-
ground. This also requires the geopandas package to be installed. Default: True.

• background_map (Boolean) – If True map is drawn in the background. This also
requires the contextily package to be installed. Default: True.

• voltage (pandas.DataFrame) – Dataframe with voltage results from power flow analysis
in p.u.. Index of the dataframe is a pandas.DatetimeIndex, columns are the bus representa-
tives. Only needs to be provided when parameter node_color is set to ‘voltage’. Default:
None.

• limits_cb_lines (tuple) – Tuple with limits for colorbar of line color. First entry
is the minimum and second entry the maximum value. Only needs to be provided when
parameter line_color is not None. Default: None.

• limits_cb_nodes (tuple) – Tuple with limits for colorbar of nodes. First entry is the
minimum and second entry the maximum value. Only needs to be provided when parameter
node_color is not None. Default: None.

• xlim (tuple) – Limits of x-axis. Default: None.

• ylim (tuple) – Limits of y-axis. Default: None.

• lines_cmap (str) – Colormap to use for lines in case line_color is ‘loading’ or ‘expan-
sion_costs’. Default: ‘inferno_r’.

• title (str) – Title of the plot. Default: ‘’.

• scaling_factor_line_width (float or None) – If provided line width is set ac-
cording to the nominal apparent power of the lines. If line width is None a default line width
of 2 is used for each line. Default: None.

edisgo.tools.pypsa_io module

This module provides tools to convert graph based representation of the grid topology to PyPSA data model. Call
to_pypsa() to retrieve the PyPSA grid container.

edisgo.tools.pypsa_io.to_pypsa(network, mode, timesteps)
Translate graph based grid representation to PyPSA Network

For details from a user perspective see API documentation of analyze() of the API class EDisGo.

Translating eDisGo’s grid topology to PyPSA representation is structured into translating the topology and
adding time series for components of the grid. In both cases translation of MV grid only (mode=’mv’), LV grid
only (mode=’lv’), MV and LV (mode=None) share some code. The code is organized as follows:

• Medium-voltage only (mode=’mv’): All medium-voltage grid components are exported by
mv_to_pypsa() including the LV station. LV grid load and generation is considered using
add_aggregated_lv_components(). Time series are collected by _pypsa_load_timeseries (as ex-
ample for loads, generators and buses) specifying mode=’mv’). Timeseries for aggregated load/generation
at substations are determined individually.

• Low-voltage only (mode=’lv’): LV grid topology including the MV-LV transformer is exported. The slack
is defind at primary side of the MV-LV transformer.

• Both level MV+LV (mode=None): The entire grid topology is translated to PyPSA in order to perform
a complete power flow analysis in both levels together. First, both grid levels are translated seperately

9.1. edisgo package 91

http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

eDisGo Documentation, Release 0.0.10

using mv_to_pypsa() and lv_to_pypsa(). Those are merge by combine_mv_and_lv(). Time
series are obtained at once for both grid levels.

This PyPSA interface is aware of translation errors and performs so checks on integrity of data converted to
PyPSA grid representation

• Sub-graphs/ Sub-networks: It is ensured the grid has no islanded parts

• Completeness of time series: It is ensured each component has a time series

• Buses available: Each component (load, generator, line, transformer) is connected to a bus. The PyPSA
representation is check for completeness of buses.

• Duplicate labels in components DataFrames and components’ time series DataFrames

Parameters

• network (Network) – eDisGo grid container

• mode (str) – Determines grid levels that are translated to PyPSA grid representation.
Specify

– None to export MV and LV grid levels. None is the default.

– (‘mv’ to export MV grid level only. This includes cumulative load and generation from
underlying LV grid aggregated at respective LV station. This option is implemented,
though the rest of edisgo does not handle it yet.)

– (‘lv’ to export LV grid level only. This option is not yet implemented)

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies which
time steps to export to pypsa representation and use in power flow analysis.

Returns The PyPSA network container.

Return type pypsa.Network

edisgo.tools.pypsa_io.mv_to_pypsa(network)
Translate MV grid topology representation to PyPSA format

MV grid topology translated here includes

• MV station (no transformer, see analyze())

• Loads, Generators, Lines, Storages, Branch Tees of MV grid level as well as LV stations. LV stations do
not have load and generation of LV level.

Parameters network (Network) – eDisGo grid container

Returns

• dict of pandas.DataFrame – A DataFrame for each type of PyPSA components constituting
the grid topology. Keys included

– ’Generator’

– ’Load’

– ’Line’

– ’BranchTee’

– ’Transformer’

– ’StorageUnit’

92 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
https://www.pypsa.org/doc/components.html#network
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://www.pypsa.org/doc/components.html#network
https://pypsa.org/doc/components.html#network
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

• .. warning:: – PyPSA takes resistance R and reactance X in p.u. The conversion from values
in ohm to pu notation is performed by following equations

𝑟𝑝.𝑢. = 𝑅Ω/𝑍𝐵

𝑥𝑝.𝑢. = 𝑋Ω/𝑍𝐵

𝑤𝑖𝑡ℎ

𝑍𝐵 = 𝑉𝐵/𝑆𝐵

I’m quite sure, but its not 100 % clear if the base voltage V_B is chosen correctly. We
take the primary side voltage of transformer as the transformers base voltage. See #54 for
discussion.

edisgo.tools.pypsa_io.lv_to_pypsa(network)
Convert LV grid topology to PyPSA representation

Includes grid topology of all LV grids of lv_grids

Parameters network (Network) – eDisGo grid container

Returns

A DataFrame for each type of PyPSA components constituting the grid topology. Keys included

• ’Generator’

• ’Load’

• ’Line’

• ’BranchTee’

• ’StorageUnit’

Return type dict of pandas.DataFrame

edisgo.tools.pypsa_io.combine_mv_and_lv(mv, lv)
Combine MV and LV grid topology in PyPSA format

edisgo.tools.pypsa_io.add_aggregated_lv_components(network, components)
Aggregates LV load and generation at LV stations

Use this function if you aim for MV calculation only. The according DataFrames of components are extended
by load and generators representing these aggregated respecting the technology type.

Parameters

• network (Network) – The eDisGo grid topology model overall container

• components (dict of pandas.DataFrame) – PyPSA components in tabular format

Returns The dictionary components passed to the function is returned altered.

Return type dict of pandas.DataFrame

edisgo.tools.pypsa_io.process_pfa_results(network, pypsa, timesteps)
Assing values from PyPSA to results

Parameters

• network (Network) – The eDisGo grid topology model overall container

• pypsa (pypsa.Network) – The PyPSA Network container

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Time steps for which latest
power flow analysis was conducted for and for which to retrieve pypsa results.

9.1. edisgo package 93

https://github.com/openego/eDisGo/issues/54
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://pypsa.org/doc/components.html#network
https://www.pypsa.org/doc/components.html#network
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp

eDisGo Documentation, Release 0.0.10

Notes

P and Q (and respectively later S) are returned from the line ending/ transformer side with highest apparent
power S, exemplary written as

𝑆𝑚𝑎𝑥 = 𝑚𝑎𝑥(
√︀
𝑃02 + 𝑄02,

√︀
𝑃12 + 𝑄12)𝑃 = 𝑃0𝑃1(𝑆𝑚𝑎𝑥)𝑄 = 𝑄0𝑄1(𝑆𝑚𝑎𝑥)

See also:

Results Understand how results of power flow analysis are structured in eDisGo.

edisgo.tools.pypsa_io.update_pypsa_generator_import(network)
Translate graph based grid representation to PyPSA Network

For details from a user perspective see API documentation of analyze() of the API class EDisGo.

Translating eDisGo’s grid topology to PyPSA representation is structured into translating the topology and
adding time series for components of the grid. In both cases translation of MV grid only (mode=’mv’), LV grid
only (mode=’lv’), MV and LV (mode=None) share some code. The code is organized as follows:

• Medium-voltage only (mode=’mv’): All medium-voltage grid components are exported by
mv_to_pypsa() including the LV station. LV grid load and generation is considered using
add_aggregated_lv_components(). Time series are collected by _pypsa_load_timeseries (as ex-
ample for loads, generators and buses) specifying mode=’mv’). Timeseries for aggregated load/generation
at substations are determined individually.

• Low-voltage only (mode=’lv’): LV grid topology including the MV-LV transformer is exported. The slack
is defind at primary side of the MV-LV transformer.

• Both level MV+LV (mode=None): The entire grid topology is translated to PyPSA in order to perform
a complete power flow analysis in both levels together. First, both grid levels are translated seperately
using mv_to_pypsa() and lv_to_pypsa(). Those are merge by combine_mv_and_lv(). Time
series are obtained at once for both grid levels.

This PyPSA interface is aware of translation errors and performs so checks on integrity of data converted to
PyPSA grid representation

• Sub-graphs/ Sub-networks: It is ensured the grid has no islanded parts

• Completeness of time series: It is ensured each component has a time series

• Buses available: Each component (load, generator, line, transformer) is connected to a bus. The PyPSA
representation is check for completeness of buses.

• Duplicate labels in components DataFrames and components’ time series DataFrames

Parameters

• network (Network) – eDisGo grid container

• mode (str) – Determines grid levels that are translated to PyPSA grid representation.
Specify

– None to export MV and LV grid levels. None is the default.

– (‘mv’ to export MV grid level only. This includes cumulative load and generation from
underlying LV grid aggregated at respective LV station. This option is implemented,
though the rest of edisgo does not handle it yet.)

– (‘lv’ to export LV grid level only. This option is not yet implemented)

94 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#str
https://www.pypsa.org/doc/components.html#network

eDisGo Documentation, Release 0.0.10

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies which
time steps to export to pypsa representation and use in power flow analysis.

Returns

The PyPSA network container.

Return type pypsa.Network

edisgo.tools.pypsa_io.update_pypsa_grid_reinforcement(network, equip-
ment_changes)

Update equipment data of lines and transformers after grid reinforcement.

During grid reinforcement (cf. edisgo.flex_opt.reinforce_grid.reinforce_grid()) grid
topology and equipment of lines and transformers are changed. In order to save time and not do a full transla-
tion of eDisGo’s grid topology to the PyPSA format, this function provides an updater for data that may change
during grid reinforcement.

The PyPSA grid topology edisgo.grid.network.Network.pypsa() is update by changed equipment
stored in edisgo.grid.network.Network.equipment_changes.

Parameters

• network (Network) – eDisGo grid container

• equipment_changes (pandas.DataFrame<dataframe>) – Dataframe with latest equip-
ment changes (of latest iteration step) from grid reinforcement. See equipment_changes
property of Results for more information on the Dataframe.

edisgo.tools.pypsa_io.update_pypsa_storage(pypsa, storages, storages_lines)
Adds storages and their lines to pypsa representation of the edisgo graph.

This function effects the following attributes of the pypsa network: components (‘StorageUnit’), storage_units,
storage_units_t (p_set, q_set), buses, lines

Parameters

• pypsa (pypsa.Network) –

• storages (list) – List with storages of type Storage to add to pypsa network.

• storages_lines (list) – List with lines of type Line that connect storages to the
grid.

edisgo.tools.pypsa_io.update_pypsa_timeseries(network, loads_to_update=None,
generators_to_update=None, stor-
ages_to_update=None, timesteps=None)

Updates load, generator, storage and bus time series in pypsa network.

See functions update_pypsa_load_timeseries(), update_pypsa_generator_timeseries(),
update_pypsa_storage_timeseries(), and update_pypsa_bus_timeseries() for more
information.

Parameters

• network (Network) – The eDisGo grid topology model overall container

• loads_to_update (list, optional) – List with all loads (of type Load) that need to
be updated. If None all loads are updated depending on mode. See to_pypsa() for more
information.

• generators_to_update (list, optional) – List with all generators (of type
Generator) that need to be updated. If None all generators are updated depending on
mode. See to_pypsa() for more information.

9.1. edisgo package 95

http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://www.pypsa.org/doc/components.html#network
https://pypsa.org/doc/components.html#network
https://pypsa.org/doc/components.html#network
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

eDisGo Documentation, Release 0.0.10

• storages_to_update (list, optional) – List with all storages (of type Storage)
that need to be updated. If None all storages are updated depending on mode. See
to_pypsa() for more information.

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies which
time steps of the load time series to export to pypsa representation and use in power flow
analysis. If None all time steps currently existing in pypsa representation are updated. If not
None current time steps are overwritten by given time steps. Default: None.

edisgo.tools.pypsa_io.update_pypsa_load_timeseries(network, loads_to_update=None,
timesteps=None)

Updates load time series in pypsa representation.

This function overwrites p_set and q_set of loads_t attribute of pypsa network. Be aware that if you call this
function with timesteps and thus overwrite current time steps it may lead to inconsistencies in the pypsa network
since only load time series are updated but none of the other time series or the snapshots attribute of the pypsa
network. Use the function update_pypsa_timeseries() to change the time steps you want to analyse
in the power flow analysis. This function will also raise an error when a load that is currently not in the pypsa
representation is added.

Parameters

• network (Network) – The eDisGo grid topology model overall container

• loads_to_update (list, optional) – List with all loads (of type Load) that need to
be updated. If None all loads are updated depending on mode. See to_pypsa() for more
information.

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies which
time steps of the load time series to export to pypsa representation. If None all time steps
currently existing in pypsa representation are updated. If not None current time steps are
overwritten by given time steps. Default: None.

edisgo.tools.pypsa_io.update_pypsa_generator_timeseries(network, genera-
tors_to_update=None,
timesteps=None)

Updates generator time series in pypsa representation.

This function overwrites p_set and q_set of generators_t attribute of pypsa network. Be aware that if you call
this function with timesteps and thus overwrite current time steps it may lead to inconsistencies in the pypsa
network since only generator time series are updated but none of the other time series or the snapshots attribute
of the pypsa network. Use the function update_pypsa_timeseries() to change the time steps you want
to analyse in the power flow analysis. This function will also raise an error when a generator that is currently
not in the pypsa representation is added.

Parameters

• network (Network) – The eDisGo grid topology model overall container

• generators_to_update (list, optional) – List with all generators (of type
Generator) that need to be updated. If None all generators are updated depending on
mode. See to_pypsa() for more information.

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies which
time steps of the generator time series to export to pypsa representation. If None all time
steps currently existing in pypsa representation are updated. If not None current time steps
are overwritten by given time steps. Default: None.

edisgo.tools.pypsa_io.update_pypsa_storage_timeseries(network, stor-
ages_to_update=None,
timesteps=None)

96 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp

eDisGo Documentation, Release 0.0.10

Updates storage time series in pypsa representation.

This function overwrites p_set and q_set of storage_unit_t attribute of pypsa network. Be aware that if you call
this function with timesteps and thus overwrite current time steps it may lead to inconsistencies in the pypsa
network since only storage time series are updated but none of the other time series or the snapshots attribute of
the pypsa network. Use the function update_pypsa_timeseries() to change the time steps you want to
analyse in the power flow analysis. This function will also raise an error when a storage that is currently not in
the pypsa representation is added.

Parameters

• network (Network) – The eDisGo grid topology model overall container

• storages_to_update (list, optional) – List with all storages (of type Storage)
that need to be updated. If None all storages are updated depending on mode. See
to_pypsa() for more information.

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies which
time steps of the storage time series to export to pypsa representation. If None all time steps
currently existing in pypsa representation are updated. If not None current time steps are
overwritten by given time steps. Default: None.

edisgo.tools.pypsa_io.update_pypsa_bus_timeseries(network, timesteps=None)
Updates buses voltage time series in pypsa representation.

This function overwrites v_mag_pu_set of buses_t attribute of pypsa network. Be aware that if you call this
function with timesteps and thus overwrite current time steps it may lead to inconsistencies in the pypsa network
since only bus time series are updated but none of the other time series or the snapshots attribute of the pypsa
network. Use the function update_pypsa_timeseries() to change the time steps you want to analyse
in the power flow analysis.

Parameters

• network (Network) – The eDisGo grid topology model overall container

• timesteps (pandas.DatetimeIndex or pandas.Timestamp) – Timesteps specifies which
time steps of the time series to export to pypsa representation. If None all time steps cur-
rently existing in pypsa representation are updated. If not None current time steps are over-
written by given time steps. Default: None.

edisgo.tools.tools module

edisgo.tools.tools.select_worstcase_snapshots(network)
Select two worst-case snapshots from time series

Two time steps in a time series represent worst-case snapshots. These are

1. Load case: refers to the point in the time series where the (load - generation) achieves its maximum
and is greater than 0.

2. Feed-in case: refers to the point in the time series where the (load - generation) achieves its minimum
and is smaller than 0.

These two points are identified based on the generation and load time series. In case load or feed-in case don’t
exist None is returned.

Parameters network (Network) – Network for which worst-case snapshots are identified.

Returns Dictionary with keys ‘load_case’ and ‘feedin_case’. Values are corresponding worst-case
snapshots of type pandas.Timestamp or None.

9.1. edisgo package 97

https://docs.python.org/3/library/stdtypes.html#list
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp

eDisGo Documentation, Release 0.0.10

Return type dict

edisgo.tools.tools.get_residual_load_from_pypsa_network(pypsa_network)
Calculates residual load in MW in MV grid and underlying LV grids.

Parameters pypsa_network (pypsa.Network) – The PyPSA network container, containing load
flow results.

Returns Series with residual load in MW for each time step. Positiv values indicate a higher demand
than generation and vice versa. Index of the series is a pandas.DatetimeIndex

Return type pandas.Series

edisgo.tools.tools.assign_load_feedin_case(network)
For each time step evaluate whether it is a feed-in or a load case.

Feed-in and load case are identified based on the generation and load time series and defined as follows:

1. Load case: positive (load - generation) at HV/MV substation

2. Feed-in case: negative (load - generation) at HV/MV substation

Output of this function is written to timesteps_load_feedin_case attribute of the network.timeseries (see
TimeSeries).

Parameters network (Network) – Network for which worst-case snapshots are identified.

Returns Dataframe with information on whether time step is handled as load case (‘load_case’)
or feed-in case (‘feedin_case’) for each time step in timeindex attribute of network.timeseries.
Index of the dataframe is network.timeseries.timeindex. Columns of the dataframe are ‘resid-
ual_load’ with (load - generation) in kW at HV/MV substation and ‘case’ with ‘load_case’ for
positive residual load and ‘feedin_case’ for negative residual load.

Return type pandas.DataFrame

edisgo.tools.tools.calculate_relative_line_load(network, configs, line_load,
line_voltages, lines=None,
timesteps=None)

Calculates relative line loading.

Line loading is calculated by dividing the current at the given time step by the allowed current.

Parameters

• network (pypsa.Network) – Pypsa network with lines to calculate line loading for.

• configs (dict) – Dictionary with used configurations from config files. See Config
for more information.

• line_load (pandas.DataFrame) – Dataframe with current results from power flow anal-
ysis in A. Index of the dataframe is a pandas.DatetimeIndex, columns are the line represen-
tatives.

• line_voltages (pandas.Series) – Series with nominal voltages of lines in kV. Index of
the dataframe are the line representatives.

• lines (list(str) or None, optional) – Line names/representatives of lines to
calculate line loading for. If None line loading of all lines in line_load dataframe are used.
Default: None.

• timesteps (pandas.Timestamp or list(pandas.Timestamp) or None, optional) – Specifies
time steps to calculate line loading for. If timesteps is None all time steps in line_load
dataframe are used. Default: None.

98 Chapter 9. API

https://docs.python.org/3/library/stdtypes.html#dict
https://pypsa.org/doc/components.html#network
https://www.pypsa.org/doc/components.html#network
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#series
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
https://pypsa.org/doc/components.html#network
https://docs.python.org/3/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#series
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp
http://pandas.pydata.org/pandas-docs/stable/api.html#timestamp

eDisGo Documentation, Release 0.0.10

Returns Dataframe with relative line loading (unitless). Index of the dataframe is a pan-
das.DatetimeIndex, columns are the line representatives.

Return type pandas.DataFrame

Module contents

edisgo.tools.session_scope()
Function to ensure that sessions are closed properly.

9.1.2 Module contents

9.2 edisgo

9.2. edisgo 99

http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#datetimeindex
http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

eDisGo Documentation, Release 0.0.10

100 Chapter 9. API

CHAPTER 10

What’s New

Changelog for each release.

• Release v0.0.10

• Release v0.0.9

• Release v0.0.8

• Release v0.0.7

• Release v0.0.6

• Release v0.0.5

• Release v0.0.3

• Release v0.0.2

10.1 Release v0.0.10

Release date: October 18, 2019

10.1.1 Changes

• Updated to networkx 2.0

• Changed data of transformers #240

• Proper session handling and readonly usage (PR #160)

101

https://github.com/openego/ding0/issues/240
https://github.com/openego/eDisGo/pull/160

eDisGo Documentation, Release 0.0.10

10.1.2 Bug fixes

• Corrected calculation of current from pypsa power flow results (PR #153).

10.2 Release v0.0.9

Release date: December 3, 2018

10.2.1 Changes

• bug fix in determining voltage deviation in LV stations and LV grid

10.3 Release v0.0.8

Release date: October 29, 2018

10.3.1 Changes

• added tolerance for curtailment targets slightly higher than generator availability to allow small rounding errors

10.4 Release v0.0.7

Release date: October 23, 2018

This release mainly focuses on new plotting functionalities and making reimporting saved results to further analyze
and visualize them more comfortable.

10.4.1 Changes

• new plotting methods in the EDisGo API class (plottings of the MV grid topology showing line loadings, grid
expansion costs, voltages and/or integrated storages and histograms for voltages and relative line loadings)

• new classes EDisGoReimport, NetworkReimport and ResultsReimport to reimport saved results and enable all
analysis and plotting functionalities offered by the original classes

• bug fixes

10.5 Release v0.0.6

Release date: September 6, 2018

This release comes with a bunch of new features such as results output and visualization, speed-up options, a new
storage integration methodology and an option to provide separate allowed voltage deviations for calculation of grid
expansion needs. See list of changes below for more details.

102 Chapter 10. What’s New

https://github.com/openego/eDisGo/pull/153

eDisGo Documentation, Release 0.0.10

10.5.1 Changes

• A methodolgy to integrate storages in the MV grid to reduce grid expansion costs was added that takes a given
storage capacity and operation and allocates it to multiple smaller storages. This methodology is mainly to be
used together with the eTraGo tool where an optimization of the HV and EHV levels is conducted to calculate
optiomal storage size and operation at each HV/MV substation.

• The voltage-based curtailment methodolgy was adapted to take into account allowed voltage deviations and
curtail generators with voltages that exceed the allowed voltage deviation more than generators with voltages
that do not exceed the allowed voltage deviation.

• When conducting grid reinforcement it is now possible to apply separate allowed voltage deviations for different
voltage levels (#108). Furthermore, an additional check was added at the end of the grid expansion methodology
if the 10%-criterion was observed.

• To speed up calculations functions to update the pypsa representation of the edisgo graph after generator import,
storage integration and time series update, e.g. after curtailment, were added.

• Also as a means to speed up calculations an option to calculate grid expansion costs for the two worst time steps,
characterized by highest and lowest residual load at the HV/MV substation, was added.

• For the newly added storage integration methodology it was necessary to calculate grid expansion costs without
changing the topology of the graph in order to identify feeders with high grid expansion needs. Therefore, the
option to conduct grid reinforcement on a copy of the graph was added to the grid expansion function.

• So far loads and generators always provided or consumed inductive reactive power with the specified power
factor. It is now possible to specify whether loads and generators should behave as inductors or capacitors and
to provide a concrete reactive power time series(#131).

• The Results class was extended by outputs for storages, grid losses and active and reactive power at the HV/MV
substation (#138) as well as by a function to save all results to csv files.

• A plotting function to plot line loading in the MV grid was added.

• Update ding0 version to v0.1.8 and include data processing v0.4.5 data

• Bug fix

10.6 Release v0.0.5

Release date: July 19, 2018

Most important changes in this release are some major bug fixes, a differentiation of line load factors and allowed
voltage deviations for load and feed-in case in the grid reinforcement and a possibility to update time series in the
pypsa representation.

10.6.1 Changes

• Switch disconnecters in MV rings will now be installed, even if no LV station exists in the ring #136

• Update to new version of ding0 v0.1.7

• Consider feed-in and load case in grid expansion methodology

• Enable grid expansion on snapshots

• Bug fixes

10.6. Release v0.0.5 103

https://github.com/openego/eTraGo
https://github.com/openego/eDisGo/issues/108
https://github.com/openego/eDisGo/issues/131
https://github.com/openego/eDisGo/issues/138
https://github.com/openego/ding0/releases/tag/v0.1.8
https://github.com/openego/data_processing/releases/tag/v0.4.5
https://github.com/openego/eDisGo/issues/135
https://github.com/openego/eDisGo/issues/136
https://github.com/openego/ding0/releases/tag/v0.1.7

eDisGo Documentation, Release 0.0.10

10.7 Release v0.0.3

Release date: July 6 2018

New features have been included in this release. Major changes being the use of the weather_cell_id and the inclusion
of new methods for distributing the curtailment to be more suitable to network operations.

10.7.1 Changes

• As part of the solution to github issues #86, #98, Weather cell information was of importance due to the changes
in the source of data. The table ego_renewable_feedin_v031 is now used to provide this feedin time series
indexed using the weather cell id’s. Changes were made to ego.io and ding0 to correspondingly allow the use of
this table by eDisGo.

• A new curtailment method have been included based on the voltages at the nodes with GeneratorFluctuating ob-
jects. The method is called curtail_voltage and its objective is to increase curtailment at locations where voltages
are very high, thereby alleviating over-voltage issues and also reducing the need for network reinforcement.

• Add parallelization for custon functions #130

• Update ding0 version to v0.1.6 and include data processing v.4.2 data

• Bug Fixes

10.8 Release v0.0.2

Release date: March 15 2018

The code was heavily revised. Now, eDisGo provides the top-level API class EDisGo for user interaction. See below
for details and other small changes.

10.8.1 Changes

• Switch disconnector/ disconnecting points are now relocated by eDisGo #99. Before, locations determined by
Ding0 were used. Relocation is conducted according to minimal load differences in both parts of the ring.

• Switch disconnectors are always located in LV stations #23

• Made all round speed improvements as mentioned in the issues #43

• The structure of eDisGo and its input data has been extensively revised in order to make it more consistent and
easier to use. We introduced a top-level API class called EDisGo through which all user input and measures
are now handled. The EDisGo class thereby replaces the former Scenario class and parts of the Network class.
See A minimum working example for a quick overview of how to use the EDisGo class or Usage details for a
more comprehensive introduction to the edisgo structure and usage.

• We introduce a CLI script to use basic functionality of eDisGo including parallelization. CLI uses higher level
functions to run eDisGo. Consult edisgo_run for further details. #93.

104 Chapter 10. What’s New

https://github.com/openego/eDisGo/issues/86
https://github.com/openego/eDisGo/issues/98
https://github.com/openego/eDisGo/issues/130
https://github.com/openego/ding0/releases/tag/v0.1.6
https://github.com/openego/data_processing/releases/tag/v0.4.2
https://github.com/openego/eDisGo/issues/99
https://github.com/openego/eDisGo/issues/23
https://github.com/openego/eDisGo/issues/43
https://github.com/openego/eDisGo/issues/93

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

105

eDisGo Documentation, Release 0.0.10

106 Chapter 11. Indices and tables

Bibliography

[DENA] A.C. Agricola et al.: dena-Verteilnetzstudie: Ausbau- und Innovationsbedarf der Stromverteilnetze in
Deutschland bis 2030. 2012.

107

eDisGo Documentation, Release 0.0.10

108 Bibliography

Python Module Index

e
edisgo, 99
edisgo.data, 39
edisgo.data.export_data, 37
edisgo.data.import_data, 37
edisgo.flex_opt, 49
edisgo.flex_opt.check_tech_constraints,

39
edisgo.flex_opt.costs, 41
edisgo.flex_opt.curtailment, 42
edisgo.flex_opt.exceptions, 43
edisgo.flex_opt.reinforce_grid, 44
edisgo.flex_opt.reinforce_measures, 45
edisgo.flex_opt.storage_integration, 47
edisgo.flex_opt.storage_operation, 48
edisgo.flex_opt.storage_positioning, 48
edisgo.grid, 87
edisgo.grid.components, 49
edisgo.grid.connect, 58
edisgo.grid.grids, 59
edisgo.grid.network, 64
edisgo.grid.tools, 85
edisgo.tools, 99
edisgo.tools.config, 87
edisgo.tools.geo, 88
edisgo.tools.plots, 89
edisgo.tools.pypsa_io, 91
edisgo.tools.tools, 97

109

eDisGo Documentation, Release 0.0.10

110 Python Module Index

Index

Symbols
_aggregates (edisgo.grid.grids.MVGrid attribute), 61
_consumption (edisgo.grid.components.Load at-

tribute), 50
_curtailment (edisgo.grid.components.GeneratorFluctuating

attribute), 54
_generators (edisgo.grid.grids.Grid attribute), 60
_grid_district (edisgo.grid.grids.Grid attribute),

60
_id (edisgo.grid.grids.Grid attribute), 59
_loads (edisgo.grid.grids.Grid attribute), 60
_mv_disconn_points (edisgo.grid.grids.MVGrid

attribute), 61
_network (edisgo.grid.grids.Grid attribute), 59
_nodes (edisgo.grid.components.MVDisconnectingPoint

attribute), 57
_nominal_capacity

(edisgo.grid.components.Generator attribute),
52

_peak_generation (edisgo.grid.grids.Grid at-
tribute), 59

_peak_load (edisgo.grid.grids.Grid attribute), 59
_power_factor (edisgo.grid.components.Generator

attribute), 52
_power_factor (edisgo.grid.components.Load

attribute), 50
_q_sign (edisgo.grid.components.Generator attribute),

52
_q_sign (edisgo.grid.components.Load attribute), 50
_reactive_power_mode

(edisgo.grid.components.Generator attribute),
52

_reactive_power_mode
(edisgo.grid.components.Load attribute),
50

_station (edisgo.grid.grids.Grid attribute), 60
_subtype (edisgo.grid.components.Generator at-

tribute), 52
_timeseries (edisgo.grid.components.Generator at-

tribute), 52
_timeseries (edisgo.grid.components.Load at-

tribute), 50
_timeseries_reactive

(edisgo.grid.components.Load attribute),
50

_type (edisgo.grid.components.Generator attribute), 52
_type (edisgo.grid.components.Transformer attribute),

50
_v_level (edisgo.grid.components.Generator at-

tribute), 52
_voltage_nom (edisgo.grid.grids.Grid attribute), 59
_voltage_op (edisgo.grid.components.Transformer

attribute), 50
_weather_cell_id (edisgo.grid.components.GeneratorFluctuating

attribute), 54
_weather_cells (edisgo.grid.grids.Grid attribute),

60

A
add_aggregated_lv_components() (in module

edisgo.tools.pypsa_io), 93
add_basemap() (in module edisgo.tools.plots), 89
add_transformer()

(edisgo.grid.components.Station method),
49

analyze() (edisgo.grid.network.EDisGo method), 67
analyze_lopf() (edisgo.grid.network.EDisGo

method), 68
assign_load_feedin_case() (in module

edisgo.tools.tools), 98
assign_mv_feeder_to_nodes() (in module

edisgo.grid.tools), 86

B
BranchTee (class in edisgo.grid.components), 57

C
calc_geo_dist_vincenty() (in module

edisgo.tools.geo), 88

111

eDisGo Documentation, Release 0.0.10

calc_geo_lines_in_buffer() (in module
edisgo.tools.geo), 88

calculate_relative_line_load() (in module
edisgo.tools.tools), 98

check_ten_percent_voltage_deviation()
(in module edisgo.flex_opt.check_tech_constraints),
41

close() (edisgo.grid.components.MVDisconnectingPoint
method), 57

combine_mv_and_lv() (in module
edisgo.tools.pypsa_io), 93

Component (class in edisgo.grid.components), 49
Config (class in edisgo.grid.network), 71
config (edisgo.grid.network.Network attribute), 70
connect_generators() (edisgo.grid.grids.Grid

method), 60
connect_lv_generators() (in module

edisgo.grid.connect), 59
connect_mv_generators() (in module

edisgo.grid.connect), 58
connect_storage() (in module

edisgo.flex_opt.storage_integration), 47
consumption (edisgo.grid.components.Load at-

tribute), 51
consumption (edisgo.grid.grids.Grid attribute), 61
curtail() (edisgo.grid.network.EDisGo method), 67
curtailment (edisgo.grid.components.GeneratorFluctuating

attribute), 55
curtailment (edisgo.grid.network.Results attribute),

81
curtailment (edisgo.grid.network.TimeSeries at-

tribute), 76, 77
CurtailmentControl (class in

edisgo.grid.network), 73

D
data_sources (edisgo.grid.network.Network at-

tribute), 70
dingo_import_data (edisgo.grid.network.Network

attribute), 71
disconnect_storage() (in module

edisgo.grid.tools), 86
draw() (edisgo.grid.grids.MVGrid method), 61

E
EDisGo (class in edisgo.grid.network), 65
edisgo (module), 99
edisgo.data (module), 39
edisgo.data.export_data (module), 37
edisgo.data.import_data (module), 37
edisgo.flex_opt (module), 49
edisgo.flex_opt.check_tech_constraints

(module), 39
edisgo.flex_opt.costs (module), 41

edisgo.flex_opt.curtailment (module), 42
edisgo.flex_opt.exceptions (module), 43
edisgo.flex_opt.reinforce_grid (module),

44
edisgo.flex_opt.reinforce_measures (mod-

ule), 45
edisgo.flex_opt.storage_integration

(module), 47
edisgo.flex_opt.storage_operation (mod-

ule), 48
edisgo.flex_opt.storage_positioning

(module), 48
edisgo.grid (module), 87
edisgo.grid.components (module), 49
edisgo.grid.connect (module), 58
edisgo.grid.grids (module), 59
edisgo.grid.network (module), 64
edisgo.grid.tools (module), 85
edisgo.tools (module), 99
edisgo.tools.config (module), 87
edisgo.tools.geo (module), 88
edisgo.tools.plots (module), 89
edisgo.tools.pypsa_io (module), 91
edisgo.tools.tools (module), 97
EDisGoReimport (class in edisgo.grid.network), 64
efficiency_in (edisgo.grid.components.Storage at-

tribute), 56
efficiency_out (edisgo.grid.components.Storage

attribute), 56
equipment_changes (edisgo.grid.network.Results

attribute), 79
equipment_data (edisgo.grid.network.Network at-

tribute), 70
Error, 43
extend_distribution_substation_overloading()

(in module edisgo.flex_opt.reinforce_measures),
45

extend_distribution_substation_overvoltage()
(in module edisgo.flex_opt.reinforce_measures),
45

extend_substation_overloading() (in mod-
ule edisgo.flex_opt.reinforce_measures), 45

F
feedin_proportional() (in module

edisgo.flex_opt.curtailment), 43
fifty_fifty() (in module

edisgo.flex_opt.storage_operation), 48

G
generation_dispatchable

(edisgo.grid.network.TimeSeries attribute),
75, 77

112 Index

eDisGo Documentation, Release 0.0.10

generation_fluctuating
(edisgo.grid.network.TimeSeries attribute),
75, 77

generation_reactive_power
(edisgo.grid.network.TimeSeries attribute),
76, 77

Generator (class in edisgo.grid.components), 52
generator_scenario (edisgo.grid.network.Network

attribute), 70
GeneratorFluctuating (class in

edisgo.grid.components), 54
generators (edisgo.grid.grids.Grid attribute), 61
geom (edisgo.grid.components.Component attribute), 49
geom (edisgo.grid.components.Line attribute), 58
get() (in module edisgo.tools.config), 87
get_default_config_path() (in module

edisgo.tools.config), 87
get_gen_info() (in module edisgo.grid.tools), 86
get_grid_district_polygon() (in module

edisgo.tools.plots), 89
get_mv_feeder_from_line() (in module

edisgo.grid.tools), 86
get_residual_load_from_pypsa_network()

(in module edisgo.tools.tools), 98
Graph (class in edisgo.grid.grids), 62
graph (edisgo.grid.grids.Grid attribute), 60
Grid (class in edisgo.grid.grids), 59
grid (edisgo.grid.components.Component attribute), 49
grid_district (edisgo.grid.grids.Grid attribute), 60
grid_expansion_costs

(edisgo.grid.network.Results attribute), 80
grid_expansion_costs() (in module

edisgo.flex_opt.costs), 41
grid_losses (edisgo.grid.network.Results attribute),

80

H
histogram() (in module edisgo.tools.plots), 89
histogram_relative_line_load()

(edisgo.grid.network.EDisGoReimport
method), 64

histogram_voltage()
(edisgo.grid.network.EDisGoReimport
method), 64

hv_mv_exchanges (edisgo.grid.network.Results at-
tribute), 81

hv_mv_station_load() (in module
edisgo.flex_opt.check_tech_constraints),
39

I
i_res (edisgo.grid.network.Results attribute), 79
id (edisgo.grid.components.Component attribute), 49
id (edisgo.grid.grids.Grid attribute), 60

id (edisgo.grid.network.Network attribute), 69
implement_switch_disconnector() (in mod-

ule edisgo.grid.tools), 85
import_feedin_timeseries() (in module

edisgo.data.import_data), 38
import_from_ding0()

(edisgo.grid.network.EDisGo method), 67
import_from_ding0() (in module

edisgo.data.import_data), 37
import_generators()

(edisgo.grid.network.EDisGo method), 67
import_generators() (in module

edisgo.data.import_data), 38
import_load_timeseries() (in module

edisgo.data.import_data), 38
ImpossibleVoltageReduction, 44
integrate_storage()

(edisgo.grid.network.EDisGo method), 69

K
kind (edisgo.grid.components.Line attribute), 58

L
length (edisgo.grid.components.Line attribute), 58
Line (class in edisgo.grid.components), 57
line (edisgo.grid.components.MVDisconnectingPoint

attribute), 57
line_from_nodes() (edisgo.grid.grids.Graph

method), 62
lines() (edisgo.grid.grids.Graph method), 63
lines_by_attribute() (edisgo.grid.grids.Graph

method), 63
Load (class in edisgo.grid.components), 50
load (edisgo.grid.network.TimeSeries attribute), 76, 77
load_config() (in module edisgo.tools.config), 87
load_reactive_power

(edisgo.grid.network.TimeSeries attribute),
76, 77

loads (edisgo.grid.grids.Grid attribute), 61
lv_grids (edisgo.grid.grids.MVGrid attribute), 61
lv_line_load() (in module

edisgo.flex_opt.check_tech_constraints),
39

lv_to_pypsa() (in module edisgo.tools.pypsa_io), 93
lv_voltage_deviation() (in module

edisgo.flex_opt.check_tech_constraints),
41

LVGrid (class in edisgo.grid.grids), 62
LVStation (class in edisgo.grid.components), 57

M
make_directory() (in module edisgo.tools.config),

87

Index 113

eDisGo Documentation, Release 0.0.10

max_hours (edisgo.grid.components.Storage at-
tribute), 55

MaximumIterationError, 43
measures (edisgo.grid.network.Results attribute), 78
metadata (edisgo.grid.network.Network attribute), 70
mv_grid (edisgo.grid.components.LVStation attribute),

57
mv_grid (edisgo.grid.components.Transformer at-

tribute), 50
mv_grid (edisgo.grid.network.Network attribute), 70
mv_grid_topology() (in module

edisgo.tools.plots), 89
mv_line_load() (in module

edisgo.flex_opt.check_tech_constraints),
39

mv_lv_station_load() (in module
edisgo.flex_opt.check_tech_constraints),
40

mv_to_pypsa() (in module edisgo.tools.pypsa_io), 92
mv_voltage_deviation() (in module

edisgo.flex_opt.check_tech_constraints),
40

MVDisconnectingPoint (class in
edisgo.grid.components), 57

MVGrid (class in edisgo.grid.grids), 61
MVStation (class in edisgo.grid.components), 57

N
Network (class in edisgo.grid.network), 69
network (edisgo.grid.grids.Grid attribute), 60
network (edisgo.grid.network.EDisGo attribute), 67
network (edisgo.grid.network.Results attribute), 78
network (in module edisgo.flex_opt.costs), 41
NetworkReimport (class in edisgo.grid.network), 84
nodes_by_attribute() (edisgo.grid.grids.Graph

method), 62
nodes_from_line() (edisgo.grid.grids.Graph

method), 62
nominal_capacity (edisgo.grid.components.Generator

attribute), 53
nominal_capacity (edisgo.grid.components.Storage

attribute), 55
nominal_power (edisgo.grid.components.Storage at-

tribute), 55

O
one_storage_per_feeder() (in module

edisgo.flex_opt.storage_positioning), 48
open() (edisgo.grid.components.MVDisconnectingPoint

method), 57
operation (edisgo.grid.components.Storage at-

tribute), 56

P
peak_generation (edisgo.grid.grids.Grid attribute),

60
peak_generation_per_technology

(edisgo.grid.grids.Grid attribute), 60
peak_generation_per_technology_and_weather_cell

(edisgo.grid.grids.Grid attribute), 61
peak_load (edisgo.grid.components.Load attribute),

51
peak_load (edisgo.grid.grids.Grid attribute), 61
pfa_p (edisgo.grid.network.Results attribute), 78
pfa_q (edisgo.grid.network.Results attribute), 79
pfa_v_mag_pu (edisgo.grid.network.Results at-

tribute), 79
plot_mv_grid_expansion_costs()

(edisgo.grid.network.EDisGoReimport
method), 64

plot_mv_grid_topology()
(edisgo.grid.network.EDisGoReimport
method), 64

plot_mv_line_loading()
(edisgo.grid.network.EDisGoReimport
method), 64

plot_mv_storage_integration()
(edisgo.grid.network.EDisGoReimport
method), 64

plot_mv_voltages()
(edisgo.grid.network.EDisGoReimport
method), 64

position_switch_disconnectors() (in mod-
ule edisgo.grid.tools), 85

power_factor (edisgo.grid.components.Generator at-
tribute), 53

power_factor (edisgo.grid.components.Load at-
tribute), 51

power_factor (edisgo.grid.components.Storage at-
tribute), 56

process_pfa_results() (in module
edisgo.tools.pypsa_io), 93

proj2conformal() (in module edisgo.tools.geo), 88
proj2equidistant() (in module edisgo.tools.geo),

88
pypsa (edisgo.grid.network.Network attribute), 71
pypsa_timeseries()

(edisgo.grid.components.Generator method),
53

pypsa_timeseries()
(edisgo.grid.components.Load method),
51

pypsa_timeseries()
(edisgo.grid.components.Storage method),
55

114 Index

eDisGo Documentation, Release 0.0.10

Q
q_sign (edisgo.grid.components.Generator attribute),

54
q_sign (edisgo.grid.components.Load attribute), 52
q_sign (edisgo.grid.components.Storage attribute), 56
quantity (edisgo.grid.components.Line attribute), 58

R
reactive_power_mode

(edisgo.grid.components.Generator attribute),
54

reactive_power_mode
(edisgo.grid.components.Load attribute),
51

reactive_power_mode
(edisgo.grid.components.Storage attribute), 56

reinforce() (edisgo.grid.network.EDisGo method),
69

reinforce_branches_overloading() (in mod-
ule edisgo.flex_opt.reinforce_measures), 46

reinforce_branches_overvoltage() (in mod-
ule edisgo.flex_opt.reinforce_measures), 46

reinforce_grid() (in module
edisgo.flex_opt.reinforce_grid), 44

Results (class in edisgo.grid.network), 78
results (edisgo.grid.network.Network attribute), 69
ResultsReimport (class in edisgo.grid.network), 84

S
s_res() (edisgo.grid.network.Results method), 82
s_res() (edisgo.grid.network.ResultsReimport

method), 84
save() (edisgo.grid.network.Results method), 83
scenario_description

(edisgo.grid.network.Network attribute),
70

select_cable() (in module edisgo.grid.tools), 85
select_worstcase_snapshots() (in module

edisgo.tools.tools), 97
session_scope() (in module edisgo.tools), 99
set_data_source() (edisgo.grid.network.Network

method), 70
set_up_storage() (in module

edisgo.flex_opt.storage_integration), 47
soc_initial (edisgo.grid.components.Storage at-

tribute), 56
standing_loss (edisgo.grid.components.Storage at-

tribute), 56
state (edisgo.grid.components.MVDisconnectingPoint

attribute), 57
Station (class in edisgo.grid.components), 49
station (edisgo.grid.grids.Grid attribute), 60
Storage (class in edisgo.grid.components), 55

storage_at_hvmv_substation() (in module
edisgo.flex_opt.storage_integration), 47

StorageControl (class in edisgo.grid.network), 74
storages (edisgo.grid.network.Results attribute), 81
storages_costs_reduction

(edisgo.grid.network.Results attribute), 81
storages_timeseries()

(edisgo.grid.network.Results method), 81
storages_timeseries()

(edisgo.grid.network.ResultsReimport method),
84

subtype (edisgo.grid.components.Generator attribute),
53

T
timeindex (edisgo.grid.network.TimeSeries attribute),

77
TimeSeries (class in edisgo.grid.network), 75
timeseries (edisgo.grid.components.Generator at-

tribute), 53
timeseries (edisgo.grid.components.GeneratorFluctuating

attribute), 54
timeseries (edisgo.grid.components.Load attribute),

50
timeseries (edisgo.grid.components.Storage at-

tribute), 55
timeseries (edisgo.grid.network.Network attribute),

70
timeseries_reactive

(edisgo.grid.components.Generator attribute),
53

timeseries_reactive
(edisgo.grid.components.GeneratorFluctuating
attribute), 54

timeseries_reactive
(edisgo.grid.components.Load attribute),
50

TimeSeriesControl (class in edisgo.grid.network),
72

timesteps_load_feedin_case
(edisgo.grid.network.TimeSeries attribute),
78

to_pypsa() (in module edisgo.tools.pypsa_io), 91
Transformer (class in edisgo.grid.components), 49
transformers (edisgo.grid.components.Station at-

tribute), 49
type (edisgo.grid.components.Generator attribute), 53
type (edisgo.grid.components.Line attribute), 58
type (edisgo.grid.components.Transformer attribute),

50

U
unresolved_issues (edisgo.grid.network.Results

attribute), 82

Index 115

eDisGo Documentation, Release 0.0.10

update_pypsa_bus_timeseries() (in module
edisgo.tools.pypsa_io), 97

update_pypsa_generator_import() (in mod-
ule edisgo.tools.pypsa_io), 94

update_pypsa_generator_timeseries() (in
module edisgo.tools.pypsa_io), 96

update_pypsa_grid_reinforcement() (in
module edisgo.tools.pypsa_io), 95

update_pypsa_load_timeseries() (in module
edisgo.tools.pypsa_io), 96

update_pypsa_storage() (in module
edisgo.tools.pypsa_io), 95

update_pypsa_storage_timeseries() (in
module edisgo.tools.pypsa_io), 96

update_pypsa_timeseries() (in module
edisgo.tools.pypsa_io), 95

V
v_level (edisgo.grid.components.Generator attribute),

53
v_res() (edisgo.grid.network.Results method), 82
v_res() (edisgo.grid.network.ResultsReimport

method), 84
voltage_based() (in module

edisgo.flex_opt.curtailment), 42
voltage_nom (edisgo.grid.grids.Grid attribute), 60
voltage_op (edisgo.grid.components.Transformer at-

tribute), 50

W
weather_cell_id (edisgo.grid.components.GeneratorFluctuating

attribute), 55
weather_cells (edisgo.grid.grids.Grid attribute), 60
without_generator_import (in module

edisgo.flex_opt.costs), 41

116 Index

	eDisGo
	LICENSE

	Quickstart
	Installation
	Prerequisites
	A minimum working example
	Parallelization

	Usage details
	The fundamental data structure
	Identify grid issues
	Grid extension
	Battery storages
	Curtailment
	Plots
	Results

	Features in detail
	Power flow analysis
	Grid expansion
	Curtailment
	Storage integration
	References

	Notes to developers
	Installation
	Code style
	Documentation

	Definition and units
	Sign Convention
	Reactive Power Sign Convention
	Units

	Default configuration data
	config_db_tables
	config_grid_expansion
	config_timeseries
	config_grid

	Equipment data
	API
	edisgo package
	edisgo

	What’s New
	Release v0.0.10
	Release v0.0.9
	Release v0.0.8
	Release v0.0.7
	Release v0.0.6
	Release v0.0.5
	Release v0.0.3
	Release v0.0.2

	Indices and tables
	Bibliography
	Python Module Index
	Index

