import logging
import os
from zipfile import ZipFile
import pandas as pd
from sklearn import preprocessing
from edisgo.network.components import PotentialChargingParks
if "READTHEDOCS" not in os.environ:
import geopandas as gpd
logger = logging.getLogger(__name__)
COLUMNS = {
"charging_processes_df": [
"ags",
"car_id",
"destination",
"use_case",
"nominal_charging_capacity_kW",
"grid_charging_capacity_kW",
"chargingdemand_kWh",
"park_time_timesteps",
"park_start_timesteps",
"park_end_timesteps",
"charging_park_id",
"charging_point_id",
],
"potential_charging_parks_gdf": [
"id",
"use_case",
"user_centric_weight",
"geometry",
],
"simbev_config_df": [
"regio_type",
"eta_cp",
"stepsize",
"start_date",
"end_date",
"soc_min",
"grid_timeseries",
"grid_timeseries_by_usecase",
"days",
],
"potential_charging_parks_df": [
"lv_grid_id",
"distance_to_nearest_substation",
"distance_weight",
"charging_point_capacity",
"charging_point_weight",
],
"designated_charging_points_df": [
"park_end_timesteps",
"nominal_charging_capacity_kW",
"charging_park_id",
"use_case",
],
"integrated_charging_parks_df": ["edisgo_id"],
}
[docs]class Electromobility:
"""
Data container for all electromobility data.
This class holds data on charging processes (how long cars are parking at a
charging station, how much they need to charge, etc.) necessary to apply different
charging strategies, as well as information on potential charging sites and
integrated charging parks.
"""
def __init__(self, **kwargs):
self._edisgo_obj = kwargs.get("edisgo_obj")
@property
def charging_processes_df(self):
"""
DataFrame with all charging processes.
Returns
-------
:pandas:`pandas.DataFrame<DataFrame>`
DataFrame with AGS, car ID, trip destination, charging use case,
netto charging capacity, charging demand, charge start, charge end, grid
connection point and charging point ID. The columns are:
ags : int
8-digit AGS (Amtlicher GemeindeschlĂĽssel, eng. Community
Identification Number). Leading zeros are missing.
car_id : int
Car ID to differentiate charging processes from different cars.
destination : str
SimBEV driving destination.
use_case : str
SimBEV use case. Can be "hpc", "home", "public" or "work".
nominal_charging_capacity_kW : float
Vehicle charging capacity in kW.
grid_charging_capacity_kW : float
Grid-sided charging capacity including charging infrastructure
losses (nominal_charging_capacity_kW / eta_cp) in kW.
chargingdemand_kWh : float
Charging demand in kWh.
park_time_timesteps : int
Number of parking time steps.
park_start_timesteps : int
Time step the parking event starts.
park_end_timesteps : int
Time step the parking event ends.
charging_park_id : int
Designated charging park ID from potential_charging_parks_gdf. Is
NaN if the charging demand is not yet distributed.
charging_point_id : int
Designated charging point ID. Is used to differentiate between
multiple charging points at one charging park.
"""
try:
return self._charging_processes_df
except Exception:
return pd.DataFrame(columns=COLUMNS["charging_processes_df"])
@charging_processes_df.setter
def charging_processes_df(self, df):
self._charging_processes_df = df
@property
def potential_charging_parks_gdf(self):
"""
GeoDataFrame with all potential charging parks.
Returns
-------
:geopandas:`geopandas.GeoDataFrame<GeoDataFrame>`
GeoDataFrame with ID as index, AGS, charging use case (home, work, public or
hpc), user-centric weight and geometry. Columns are:
index : int
Charging park ID.
use_case : str
TracBEV use case. Can be "hpc", "home", "public" or "work".
user_centric_weight : flaot
User centric weight used in distribution of charging demand. Weight
is determined by TracBEV but normalized from 0 .. 1.
geometry : GeoSeries
Geolocation of charging parks.
"""
try:
return self._potential_charging_parks_gdf
except Exception:
return gpd.GeoDataFrame(columns=COLUMNS["potential_charging_parks_gdf"])
@potential_charging_parks_gdf.setter
def potential_charging_parks_gdf(self, gdf):
self._potential_charging_parks_gdf = gdf
@property
def potential_charging_parks(self):
"""
Potential charging parks within the AGS.
Returns
-------
list(:class:`~.network.components.PotentialChargingParks`)
List of potential charging parks within the AGS.
"""
for cp_id in self.potential_charging_parks_gdf.index:
yield PotentialChargingParks(id=cp_id, edisgo_obj=self._edisgo_obj)
@property
def simbev_config_df(self):
"""
Dictionary containing configuration data.
Returns
-------
:pandas:`pandas.DataFrame<DataFrame>`
DataFrame with used regio type, charging point efficiency, stepsize in
minutes, start date, end date, minimum SoC for hpc, grid timeseries setting,
grid timeseries by use case setting and the number of simulated days.
Columns are:
regio_type : str
RegioStaR 7 ID used in SimBEV.
eta_cp : float or int
Charging point efficiency used in SimBEV.
stepsize : int
Stepsize in minutes the driving profile is simulated for in SimBEV.
start_date : datetime64
Start date of the SimBEV simulation.
end_date : datetime64
End date of the SimBEV simulation.
soc_min : float
Minimum SoC when an HPC event is initialized in SimBEV.
grid_timeseries : bool
Setting whether a grid timeseries is generated within the SimBEV
simulation.
grid_timeseries_by_usecase : bool
Setting whether a grid timeseries by use case is generated within
the SimBEV simulation.
days : int
Timedelta between the end_date and start_date in days.
"""
try:
return self._simbev_config_df
except Exception:
return pd.DataFrame(columns=COLUMNS["simbev_config_df"])
@simbev_config_df.setter
def simbev_config_df(self, df):
self._simbev_config_df = df
@property
def integrated_charging_parks_df(self):
"""
Mapping DataFrame to map the charging park ID to the internal eDisGo ID.
The eDisGo ID is determined when integrating components using
:func:`~.EDisGo.add_component` or
:func:`~.EDisGo.integrate_component_based_on_geolocation` method.
Returns
-------
:pandas:`pandas.DataFrame<DataFrame>`
Mapping DataFrame to map the charging park ID to the internal eDisGo ID.
"""
try:
return self._integrated_charging_parks_df
except Exception:
return pd.DataFrame(columns=COLUMNS["integrated_charging_parks_df"])
@integrated_charging_parks_df.setter
def integrated_charging_parks_df(self, df):
self._integrated_charging_parks_df = df
@property
def stepsize(self):
"""
Stepsize in minutes used in
`SimBEV <https://github.com/rl-institut/simbev>`_.
Returns
-------
int
Stepsize in minutes
"""
try:
return int(self.simbev_config_df.at[0, "stepsize"])
except Exception:
return None
@property
def simulated_days(self):
"""
Number of simulated days in
`SimBEV <https://github.com/rl-institut/simbev>`_.
Returns
-------
int
Number of simulated days
"""
try:
return int(self.simbev_config_df.at[0, "days"])
except Exception:
return None
@property
def eta_charging_points(self):
"""
Charging point efficiency.
Returns
-------
float
Charging point efficiency in p.u..
"""
try:
return float(self.simbev_config_df.at[0, "eta_cp"])
except Exception:
return None
@property
def flexibility_bands(self):
"""
Dictionary with flexibility bands (lower and upper energy band as well as
upper power band).
Parameters
-----------
flex_dict : dict(str, :pandas:`pandas.DataFrame<DataFrame>`)
Keys are 'upper_power', 'lower_energy' and 'upper_energy'.
Values are dataframes containing the corresponding band per each charging
point. Columns of the dataframe are the charging point names as in
:attr:`~.network.topology.Topology.loads_df`. Index is a time index.
Returns
-------
dict(str, :pandas:`pandas.DataFrame<DataFrame>`)
See input parameter `flex_dict` for more information on the dictionary.
"""
try:
return self._flexibility_bands
except Exception:
return {
"upper_power": pd.DataFrame(),
"lower_energy": pd.DataFrame(),
"upper_energy": pd.DataFrame(),
}
@flexibility_bands.setter
def flexibility_bands(self, flex_dict):
self._flexibility_bands = flex_dict
[docs] def get_flexibility_bands(self, edisgo_obj, use_case, resample=True, tol=1e-6):
"""
Method to determine flexibility bands (lower and upper energy band as well as
upper power band).
Besides being returned by this function, flexibility bands are written to
:attr:`flexibility_bands`.
Parameters
-----------
edisgo_obj : :class:`~.EDisGo`
use_case : str or list(str)
Charging point use case(s) to determine flexibility bands for.
resample : bool (optional)
If True, flexibility bands are resampled to the same frequency as time
series data in :class:`~.network.timeseries.TimeSeries` object. If False,
original frequency is kept.
Default: True.
tol : float
Tolerance to reduce or increase flexibility band values by to fix
possible rounding errors that may lead to failing integrity checks
and infeasibility when used to optimise charging.
See :py:attr:`~fix_flexibility_bands_rounding_errors`
for more information. To avoid this behaviour, set `tol` to 0.0.
Default: 1e-6.
Returns
--------
dict(str, :pandas:`pandas.DataFrame<DataFrame>`)
Keys are 'upper_power', 'lower_energy' and 'upper_energy'.
Values are dataframes containing the corresponding band for each charging
point of the specified use case. Columns of the dataframe are the
charging point names as in :attr:`~.network.topology.Topology.loads_df`.
Index is a time index.
"""
if isinstance(use_case, str):
use_case = [use_case]
# get all relevant charging points
cp_df = edisgo_obj.topology.loads_df[
edisgo_obj.topology.loads_df.type == "charging_point"
]
cps = cp_df[cp_df.sector.isin(use_case)]
# set up time index
start_date = self.simbev_config_df.start_date.values[0]
# end date from SimBEV includes to the specified day, wherefore 1 day needs
# to be added to have the day included in the time index
end_date = self.simbev_config_df.end_date.values[0] + pd.Timedelta(1, "day")
stepsize = self.stepsize
flex_band_index = pd.date_range(
start=start_date, end=end_date, freq=f"{stepsize}min", inclusive="left"
)
# check if maximum end time step in charging data is larger than length of
# time index and if so, expand time index and raise warning
t_max = self.charging_processes_df.park_end_timesteps.max()
if len(flex_band_index) < t_max:
logger.warning(
"Time steps in charging processes exceed time steps specified in "
"SimBEV config data."
)
flex_band_index = pd.date_range(
start=start_date, periods=t_max + 1, freq=f"{stepsize}min"
)
# set up bands
tmp_idx = range(len(flex_band_index))
upper_power = pd.DataFrame(index=tmp_idx, columns=cps.index, data=0)
upper_energy = pd.DataFrame(index=tmp_idx, columns=cps.index, data=0)
lower_energy = pd.DataFrame(index=tmp_idx, columns=cps.index, data=0)
hourly_steps = 60 / self.stepsize
for cp in cps.index:
# get index of charging park used in charging processes
charging_park_id = self.integrated_charging_parks_df.loc[
self.integrated_charging_parks_df.edisgo_id == cp
].index
# get relevant charging processes
charging_processes = self.charging_processes_df.loc[
self.charging_processes_df.charging_park_id.isin(charging_park_id)
]
# iterate through charging processes and fill matrices
for idx, charging_process in charging_processes.iterrows():
# Last time steps can lead to problems --> skip
if charging_process.park_end_timesteps == max(tmp_idx):
continue
start = charging_process.park_start_timesteps
end = charging_process.park_end_timesteps
power = charging_process.nominal_charging_capacity_kW
# charging power
upper_power.loc[start:end, cp] += (
power / edisgo_obj.electromobility.eta_charging_points
)
# energy bands
charging_time = (
charging_process.chargingdemand_kWh / power * hourly_steps
)
if charging_time - (end - start + 1) > 1e-6:
raise ValueError(
"Charging demand cannot be fulfilled for charging process {}. "
"Please check.".format(idx)
)
full_charging_steps = int(charging_time)
part_time_step = charging_time - full_charging_steps
# lower band
lower_energy.loc[end - full_charging_steps + 1 : end, cp] += power
if part_time_step != 0.0:
lower_energy.loc[end - full_charging_steps, cp] += (
part_time_step * power
)
# upper band
upper_energy.loc[start : start + full_charging_steps - 1, cp] += power
upper_energy.loc[start + full_charging_steps, cp] += (
part_time_step * power
)
# convert to MW and cumulate energy
upper_power = upper_power / 1e3
lower_energy = lower_energy.cumsum() / hourly_steps / 1e3
upper_energy = upper_energy.cumsum() / hourly_steps / 1e3
# set time index
upper_power.index = flex_band_index
lower_energy.index = flex_band_index
upper_energy.index = flex_band_index
# write to self.flexibility_bands
flex_band_dict = {
"upper_power": upper_power,
"lower_energy": lower_energy,
"upper_energy": upper_energy,
}
self.flexibility_bands = flex_band_dict
# fix rounding errors
self.fix_flexibility_bands_rounding_errors(tol=tol)
edisgo_timeindex = edisgo_obj.timeseries.timeindex
if resample:
# check if time index matches Timeseries.timeindex and if not resample flex
# bands
if len(edisgo_timeindex) > 1:
# check if frequencies match
freq_edisgo = edisgo_timeindex[1] - edisgo_timeindex[0]
if freq_edisgo != pd.Timedelta(f"{stepsize}min"):
# resample
self.resample(freq=freq_edisgo)
# sanity check
self.check_integrity()
# check time index
if len(edisgo_timeindex) > 0:
missing_indices = [_ for _ in edisgo_timeindex if _ not in flex_band_index]
if len(missing_indices) > 0:
logger.warning(
"There are time steps in timeindex of TimeSeries object that "
"are not in the index of the flexibility bands. This may lead "
"to problems."
)
return self.flexibility_bands
[docs] def fix_flexibility_bands_rounding_errors(self, tol=1e-6):
"""
Fixes possible rounding errors that may lead to failing integrity checks.
Due to rounding errors it may occur, that e.g. the upper energy band is lower
than the lower energy band. This does in some cases lead to infeasibilities
when used to optimise charging processes.
This function increases or reduces a flexibility band by the specified tolerance
in case an integrity check fails as follows:
* If there are cases where the upper power band is not sufficient to meet
the charged upper energy, the upper power band is increased for all
charging points and all time steps.
* If there are cases where the lower energy band is larger than the upper
energy band, the lower energy band is reduced for all charging points and
all time steps.
* If there are cases where upper power band is not sufficient
to meet charged lower energy, the upper power band is increased for all
charging points and all time steps.
Parameters
-----------
tol : float
Tolerance to reduce or increase values by to fix rounding errors.
Default: 1e-6.
"""
flex_band = list(self.flexibility_bands.values())[0]
# if there are no flex bands, skip
if flex_band.empty:
return
efficiency = self.eta_charging_points
freq_orig = flex_band.index[1] - flex_band.index[0]
hourly_steps = int(60 / (freq_orig.total_seconds() / 60))
# increase upper power, if there are cases where upper power is not sufficient
# to meet charged upper energy
if (
(
(
self.flexibility_bands["upper_energy"].diff()
- self.flexibility_bands["upper_power"] * efficiency / hourly_steps
)
> 0.0
)
.any()
.any()
):
logger.debug(
"There are cases when upper power is not sufficient to meet charged "
"upper energy. Upper power band is therefore increased to avoid "
"infeasibilities arising from rounding errors."
)
self.flexibility_bands["upper_power"] += tol
# reduce lower energy band if there are cases where it is larger than upper
# energy band
if (
(
(
self.flexibility_bands["upper_energy"]
- self.flexibility_bands["lower_energy"]
)
< 0.0
)
.any()
.any()
):
logger.debug(
"There are cases when lower energy band is larger than upper energy "
"band. Lower energy band is therefore reduced to avoid infeasibilities "
"arising from rounding errors."
)
self.flexibility_bands["lower_energy"] -= tol
# increase upper power, if there are cases where upper power is not sufficient
# to meet charged lower energy
if (
(
(
self.flexibility_bands["lower_energy"].diff()
- self.flexibility_bands["upper_power"] * efficiency / hourly_steps
)
> 0.0
)
.any()
.any()
):
logger.debug(
"There are cases when upper power is not sufficient to meet charged "
"lower energy. Upper power band is therefore increased to avoid "
"infeasibilities arising from rounding errors."
)
self.flexibility_bands["upper_power"] += tol
[docs] def resample(self, freq: str = "15min"):
"""
Resamples flexibility bands.
Parameters
----------
freq : str or :pandas:`pandas.Timedelta<Timedelta>`, optional
Frequency that time series is resampled to. Offset aliases can be found
here:
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases.
Default: '15min'.
"""
flex_band = list(self.flexibility_bands.values())[0]
if flex_band.empty or len(flex_band.index) < 2:
return
# check if frequency is always the same (can only be checked for more than two
# time steps as pd.infer_freq needs more than two time steps)
if len(flex_band.index) > 2:
freq_inferred = pd.infer_freq(flex_band.index)
if freq_inferred is None:
logger.warning(
"Index of flexibility bands does not have a discernible frequency. "
"The flexibility bands can therefore not be resampled."
)
return
# determine frequency of flexibility bands
# pd.infer_freq is not used to determine frequency as it is not always
# compatible with pd.Timedelta() needed to check whether to sample down or up
freq_orig = flex_band.index[1] - flex_band.index[0]
if not isinstance(freq, pd.Timedelta):
freq = pd.Timedelta(freq)
# in case of up-sampling, check if index is continuous and if new index fits
# into old index a discrete number of times
if freq < freq_orig:
check_index = pd.date_range(
start=flex_band.index.min(), end=flex_band.index.max(), freq=freq_orig
)
if not len(check_index) == len(flex_band.index):
logger.warning(
"Index of flexibility bands is not continuous. This might lead "
"to problems."
)
num_times = int(freq_orig.total_seconds()) / int(freq.total_seconds())
if not int(num_times) == num_times:
logger.error(
"Up-sampling to an uneven number of times the new index fits into "
"the old index is not possible."
)
return
# add time step at the end of the time series in case of up-sampling so that
# last time interval in the original time series is still included
df_dict = {}
for band in self.flexibility_bands.keys():
df_dict[band] = getattr(self, "flexibility_bands")[band]
if freq < freq_orig: # up-sampling
end_date = pd.DatetimeIndex([df_dict[band].index[-1] + freq_orig])
else: # down-sampling (nothing happens)
end_date = pd.DatetimeIndex([df_dict[band].index[-1]])
df_dict[band] = (
df_dict[band]
.reindex(df_dict[band].index.union(end_date).unique().sort_values())
.ffill()
)
# resample time series
if freq < freq_orig: # up-sampling
for band in self.flexibility_bands.keys():
if band == "upper_power":
df_dict[band] = df_dict[band].resample(freq, closed="left").ffill()
# drop last time step, as closed left does somehow still include the
# last time step
df_dict[band] = df_dict[band].iloc[:-1, :]
else:
df_dict[band].sort_index(inplace=True)
index_pre = df_dict[band].index[0] - freq
# check how often the new index fits into the old index
num_times = int(freq_orig.total_seconds()) / int(
freq.total_seconds()
)
# shift index and re-append first time step
df_dict[band].index = df_dict[band].index.shift(
int(freq.total_seconds()) * (num_times - 1), "s"
)
# values of first time step are energy values minus possible change
# in energy negative values are set to zero
index_pre_values = (
df_dict[band].iloc[0]
- df_dict["upper_power"].iloc[0] / num_times
)
index_pre_values[index_pre_values < 0.0] = 0.0
df_dict[band] = pd.concat(
[
pd.DataFrame(
index=[index_pre],
columns=df_dict[band].columns,
data=index_pre_values.to_dict(),
),
df_dict[band],
]
)
# resample by interpolating
df_dict[band] = (
df_dict[band].resample(freq, closed="left").interpolate()
)
# drop time steps - time step that was added in the beginning
# and time steps that were added due to the shift
df_dict[band] = df_dict[band].loc[: end_date[0], :]
df_dict[band] = df_dict[band].iloc[1:-1, :]
else: # down-sampling
for band in self.flexibility_bands.keys():
if band == "upper_power":
df_dict[band] = df_dict[band].resample(freq).mean()
else:
df_dict[band] = df_dict[band].resample(freq).max()
self.flexibility_bands = df_dict
[docs] def check_integrity(self):
"""
Method to check the integrity of the Electromobility object.
Raises an error in case any of the checks fails.
Currently only checks integrity of flexibility bands.
"""
# pick random flex band for some pre-checks
flex_band = list(self.flexibility_bands.values())[0]
# if there are no flex bands, skip integrity check
if flex_band.empty:
return
efficiency = self.eta_charging_points
freq_orig = flex_band.index[1] - flex_band.index[0]
hourly_steps = int(60 / (freq_orig.total_seconds() / 60))
diff = (
self.flexibility_bands["upper_energy"]
- self.flexibility_bands["lower_energy"]
)
tmp = (diff < 0.0).any()
if tmp.any():
max_exceedance = abs(diff.min().min())
raise ValueError(
f"Lower energy band is higher than upper energy band for the "
f"following charging points: {list(tmp[tmp].index)}. The maximum "
f"exceedance is {max_exceedance}. Please check."
)
diff = (
self.flexibility_bands["upper_energy"].diff()
- self.flexibility_bands["upper_power"] * efficiency / hourly_steps
)
tmp = (diff > 0.0).any()
if tmp.any():
max_exceedance = diff.max().max()
raise ValueError(
f"Upper energy band has power values higher than nominal power for the "
f"following charging points: {list(tmp[tmp].index)}. The maximum "
f"exceedance is {max_exceedance}. Please check."
)
diff = (
self.flexibility_bands["lower_energy"].diff()
- self.flexibility_bands["upper_power"] * efficiency / hourly_steps
)
tmp = (diff > 0.0).any()
if tmp.any():
max_exceedance = diff.max().max()
raise ValueError(
f"Lower energy band has power values higher than nominal power for the "
f"following charging points: {list(tmp[tmp].index)}. The maximum "
f"exceedance is {max_exceedance}. Please check."
)
[docs] def to_csv(self, directory, attributes=None):
"""
Exports electromobility data to csv files.
The following attributes can be exported:
* 'charging_processes_df' : Attribute :py:attr:`~charging_processes_df`
is saved to `charging_processes.csv`.
* 'potential_charging_parks_gdf' : Attribute
:py:attr:`~potential_charging_parks_gdf` is saved to
`potential_charging_parks.csv`.
* 'integrated_charging_parks_df' : Attribute
:py:attr:`~integrated_charging_parks_df` is saved to
`integrated_charging_parks.csv`.
* 'simbev_config_df' : Attribute :py:attr:`~simbev_config_df` is
saved to `simbev_config.csv`.
* 'flexibility_bands' : The three flexibility bands in attribute
:py:attr:`~flexibility_bands` are saved to
`flexibility_band_upper_power.csv`, `flexibility_band_lower_energy.csv`, and
`flexibility_band_upper_energy.csv`.
Parameters
----------
directory : str
Path to save electromobility data to.
attributes : list(str) or None
List of attributes to export. See above for attributes that can be exported.
If None, all specified attributes are exported. Default: None.
"""
os.makedirs(directory, exist_ok=True)
attrs_file_names = _get_matching_dict_of_attributes_and_file_names()
if attributes is None:
attributes = list(attrs_file_names.keys())
for attr in attributes:
file = attrs_file_names[attr]
df = getattr(self, attr)
if attr == "flexibility_bands":
for band in file.keys():
if band in df.keys() and not df[band].empty:
path = os.path.join(directory, file[band])
df[band].to_csv(path)
else:
if not df.empty:
path = os.path.join(directory, file)
df.to_csv(path)
[docs] def from_csv(self, data_path, edisgo_obj, from_zip_archive=False):
"""
Restores electromobility from csv files.
Parameters
----------
data_path : str
Path to electromobility csv files.
edisgo_obj : :class:`~.EDisGo`
from_zip_archive : bool, optional
Set True if data is archived in a zip archive. Default: False
"""
attrs = _get_matching_dict_of_attributes_and_file_names()
if from_zip_archive:
# read from zip archive
# setup ZipFile Class
zip = ZipFile(data_path)
# get all directories and files within zip archive
files = zip.namelist()
# add directory and .csv to files to match zip archive
attrs = {
k: (
f"electromobility/{v}"
if isinstance(v, str)
else {k2: f"electromobility/{v2}" for k2, v2 in v.items()}
)
for k, v in attrs.items()
}
else:
# read from directory
# check files within the directory
files = os.listdir(data_path)
attrs_to_read = {
k: v
for k, v in attrs.items()
if (isinstance(v, str) and v in files)
or (isinstance(v, dict) and any([_ in files for _ in v.values()]))
}
for attr, file in attrs_to_read.items():
if attr == "flexibility_bands":
df = {}
for band, file_name in file.items():
if file_name in files:
if from_zip_archive:
# open zip file to make it readable for pandas
with zip.open(file_name) as f:
df[band] = pd.read_csv(f, index_col=0, parse_dates=True)
else:
path = os.path.join(data_path, file_name)
df[band] = pd.read_csv(path, index_col=0, parse_dates=True)
else:
if from_zip_archive:
# open zip file to make it readable for pandas
with zip.open(file) as f:
df = pd.read_csv(f, index_col=0)
else:
path = os.path.join(data_path, file)
df = pd.read_csv(path, index_col=0)
if attr == "potential_charging_parks_gdf":
epsg = edisgo_obj.topology.grid_district["srid"]
df = df.assign(geometry=gpd.GeoSeries.from_wkt(df["geometry"]))
try:
df = gpd.GeoDataFrame(
df, geometry="geometry", crs={"init": f"epsg:{epsg}"}
)
except Exception:
logger.warning(
f"Potential charging parks could not be loaded with "
f"EPSG {epsg}. Trying with EPSG 4326 as fallback."
)
df = gpd.GeoDataFrame(
df, geometry="geometry", crs={"init": "epsg:4326"}
)
if attr == "simbev_config_df":
for col in ["start_date", "end_date"]:
if col in df.columns:
df[col] = pd.to_datetime(df[col])
setattr(self, attr, df)
if from_zip_archive:
# make sure to destroy ZipFile Class to close any open connections
zip.close()
@property
def _potential_charging_parks_df(self):
"""
Overview over `SimBEVs <https://github.com/rl-institut/simbev>`_
potential charging parks from
:class:`~.network.components.PotentialChargingParks`.
Returns
-------
:pandas:`pandas.DataFrame<DataFrame>`
DataFrame with LV Grid ID, distance to nearest substation, distance
weight, charging point capacity and charging point weight. Columns are:
lv_grid_id : int
ID of nearest lv grid.
distance_to_nearest_substation : float
Distance to nearest lv grid substation.
distance_weight : float
Weighting used in grid friendly siting of public charging points.
In the case of distance to nearest substation the weight is higher
the closer the substation is to the charging park. The weight is
normalized between 0 .. 1. A higher weight is more attractive.
charging_point_capacity : float
Total gross designated charging park capacity in kW.
charging_point_weight : float
Weighting used in grid friendly siting of public charging points.
In the case of charging points the weight is higher the lower the
designated charging point capacity is. The weight is normalized
between 0 .. 1. A higher weight is more attractive.
"""
try:
potential_charging_parks_df = pd.DataFrame(
columns=COLUMNS["potential_charging_parks_df"]
)
potential_charging_parks = list(self.potential_charging_parks)
potential_charging_parks_df.lv_grid_id = [
_.nearest_substation["lv_grid_id"] for _ in potential_charging_parks
]
potential_charging_parks_df.distance_to_nearest_substation = [
_.nearest_substation["distance"] for _ in potential_charging_parks
]
min_max_scaler = preprocessing.MinMaxScaler()
# fmt: off
potential_charging_parks_df.distance_weight = (
1 - min_max_scaler.fit_transform(
potential_charging_parks_df.distance_to_nearest_substation.values
.reshape(-1, 1) # noqa: E131
)
)
# fmt: on
potential_charging_parks_df.charging_point_capacity = [
_.designated_charging_point_capacity for _ in potential_charging_parks
]
potential_charging_parks_df.charging_point_weight = (
1
- min_max_scaler.fit_transform(
potential_charging_parks_df.charging_point_capacity.values.reshape(
-1, 1
)
)
)
return potential_charging_parks_df
except Exception:
return pd.DataFrame(columns=COLUMNS["potential_charging_parks_df"])
def _get_matching_dict_of_attributes_and_file_names():
"""
Helper function to specify which Electromobility attributes to save and
restore and maps them to the file name.
Is used in functions
:attr:`~.network.electromobility.Electromobility.from_csv` and
:attr:`~.network.electromobility.Electromobility.to_csv`.
Returns
-------
dict
Dict of Electromobility attributes to save and restore as keys and
and matching files as values.
"""
emob_dict = {
"charging_processes_df": "charging_processes.csv",
"potential_charging_parks_gdf": "potential_charging_parks.csv",
"integrated_charging_parks_df": "integrated_charging_parks.csv",
"simbev_config_df": "metadata_simbev_run.csv",
"flexibility_bands": {
"upper_power": "flexibility_band_upper_power.csv",
"lower_energy": "flexibility_band_lower_energy.csv",
"upper_energy": "flexibility_band_upper_energy.csv",
},
}
return emob_dict